CIESC Journal ›› 2024, Vol. 75 ›› Issue (6): 2344-2352.DOI: 10.11949/0438-1157.20231163
• Energy and environmental engineering • Previous Articles Next Articles
Chenggong CHANG(), Haonan SONG, Feixia LEI, Zichen DI(
), Fangqin CHENG
Received:
2023-11-13
Revised:
2024-02-20
Online:
2024-07-03
Published:
2024-06-25
Contact:
Zichen DI
通讯作者:
狄子琛
作者简介:
常成功(1998—),男,硕士研究生,ccg15835629504@163.com
基金资助:
CLC Number:
Chenggong CHANG, Haonan SONG, Feixia LEI, Zichen DI, Fangqin CHENG. Study on the carbon reduction potential of blast furnace injection process using reformed coke oven gas[J]. CIESC Journal, 2024, 75(6): 2344-2352.
常成功, 宋皓楠, 雷飞霞, 狄子琛, 程芳琴. 高炉喷吹重整焦炉气工艺分析及减碳潜力研究[J]. 化工学报, 2024, 75(6): 2344-2352.
项目 | 含量/% | 产量/m3 | ||||
---|---|---|---|---|---|---|
H2 | N2 | CO | CO2 | CH4 | ||
焦炉气 | 59 | 3 | 7 | 2 | 29 | 1 |
A | 77.30 | 2.38 | 1.70 | 2.46 | 16.16 | 1.26 |
B | 89.61 | 1.92 | 1.02 | 1.26 | 6.20 | 1.56 |
C | 97.87 | 1.67 | 0.01 | 0.03 | 0.43 | 1.80 |
Table 1 Simulation results of hydrogen production by coke oven gas reforming
项目 | 含量/% | 产量/m3 | ||||
---|---|---|---|---|---|---|
H2 | N2 | CO | CO2 | CH4 | ||
焦炉气 | 59 | 3 | 7 | 2 | 29 | 1 |
A | 77.30 | 2.38 | 1.70 | 2.46 | 16.16 | 1.26 |
B | 89.61 | 1.92 | 1.02 | 1.26 | 6.20 | 1.56 |
C | 97.87 | 1.67 | 0.01 | 0.03 | 0.43 | 1.80 |
Fe/% | C/% | Si/% | Mn/% | P/% | S/% | Cu/% | Ti/% |
---|---|---|---|---|---|---|---|
94.95 | 4.15 | 0.45 | 0.25 | 0.09 | 0.03 | 0.03 | 0.05 |
Table 2 Pig iron composition
Fe/% | C/% | Si/% | Mn/% | P/% | S/% | Cu/% | Ti/% |
---|---|---|---|---|---|---|---|
94.95 | 4.15 | 0.45 | 0.25 | 0.09 | 0.03 | 0.03 | 0.05 |
1 | 全球能源互联网发展合作组织. 中国2030年前碳达峰研究报告[M]. 北京: 中国电力出版社, 2021. |
Global Energy Interconnection Development and Cooperation Organization. China's Peak Carbon Dioxide Emissions Research Report Before 2030[M]. Beijing: China Electric Power Press, 2021. | |
2 | 沈向男, 李银星. 基于“碳达峰、碳中和”目标下的钢铁企业成本管理[J]. 品牌研究, 2020(31): 38, 40. |
Shen X N, Li Y X. Cost management of iron and steel enterprises based on the goal of “peak carbon dioxide emissions, carbon neutrality”[J]. Journal of Brand Research, 2020(31): 38, 40. | |
3 | 吕平, 郑鹏辉, 雷国鹏, 等. 烧结烟气污染物协同控制技术[J]. 科技与创新, 2020(9): 65-67. |
Lv P, Zheng P H, Lei G P, et al. Synergistic control technology of sintering flue gas pollutants[J]. Science and Technology & Innovation, 2020(9): 65-67. | |
4 | Ren L, Zhou S, Ou X M. The carbon reduction potential of hydrogen in the low carbon transition of the iron and steel industry: the case of China[J]. Renewable and Sustainable Energy Reviews, 2023, 171: 113026. |
5 | Tian S C, Jiang J G, Zhang Z T, et al. Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage[J]. Nature Communications, 2018, 9: 4422. |
6 | 徐匡迪. 低碳经济与钢铁工业[J]. 钢铁, 2010, 45(3): 1-12. |
Xu K D. Low carbon economy and iron and steel industry[J]. Iron & Steel, 2010, 45(3): 1-12. | |
7 | Yilmaz C, Wendelstorf J, Turek T. Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions[J]. Journal of Cleaner Production, 2017, 154: 488-501. |
8 | Yilmaz C, Turek T. Modeling and simulation of the use of direct reduced iron in a blast furnace to reduce carbon dioxide emissions[J]. Journal of Cleaner Production, 2017, 164: 1519-1530. |
9 | Manzolini G, Giuffrida A, Cobden P D, et al. Techno-economic assessment of SEWGS technology when applied to integrated steel-plant for CO2 emission mitigation[J]. International Journal of Greenhouse Gas Control, 2020, 94: 102935. |
10 | Johnson S, Deng L Y, Gençer E. Environmental and economic evaluation of decarbonization strategies for the Indian steel industry[J]. Energy Conversion and Management, 2023, 293: 117511. |
11 | Kuramochi T, Ramírez A, Turkenburg W, et al. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes[J]. Progress in Energy and Combustion Science, 2012, 38(1): 87-112. |
12 | 赵贵清, 谢绍玮, 徐世彪, 等. 高炉喷吹焦炉煤气技术发展及应用前景分析[J]. 甘肃冶金, 2019, 41(1): 18-21. |
Zhao G Q, Xie S W, Xu S B, et al. Technical development and application prospect of COG injection in blast furnace[J]. Gansu Metallurgy, 2019, 41(1):18-21. | |
13 | Watakabe S, Miyagawa K, Matsuzaki S, et al. Operation trial of hydrogenous gas injection of COURSE50 project at an experimental blast furnace[J]. ISIJ International, 2013, 53(12): 2065-2071. |
14 | Miwa T, Okuda H. CO2 ultimate reduction in steelmaking process by innovative technology for cool earth 50 (COURSE50) [J]. Journal of the Japan Institute of Energy, 2010, 89: 28-35. |
15 | 刘迎立. 基于氧气高炉工艺条件的熔融滴落带炉料冶金行为研究[D]. 北京: 北京科技大学, 2017. |
Liu Y L. Fundamental research on maturllurgical behavior of burden in melting and dropping zone based on the process of oxygen blast furnace[D]. Beijing: University of Science and Technology Beijing, 2017. | |
16 | 郭同来, 储满生, 柳政根, 等. 高炉喷吹天然气风口回旋区的数学模拟[C]// 2012年全国炼铁生产技术会议暨炼铁学术年会文集(下). 无锡, 2012: 52-57. |
Guo T L, Chu M S, Liu Z G, et al. Numerical simulation of blast furnace raceway under natural gas injectio[C]//2012 National Ironmaking Technology Conference and Ironmaking Academic Annual Conference (Ⅱ). Wuxi, 2012: 52-57. | |
17 | 吴瑶. 基于Aspen Plus对耦合化学链燃烧的焦炉煤气重整制氢系统性能的研究[D]. 重庆: 重庆大学, 2014. |
Wu Y. Study on systematic performance of reforming hydrogen producted from coke-oven gas by coupling with chemical looping combustion based on aspen plus[D]. Chongqing: Chongqing University, 2014. | |
18 | Peng H, Di Z C, Gong P, et al. Techno-economic assessment of a chemical looping splitting system for H2 and CO co-generation[J]. Green Energy & Environment, 2023, 8(1): 338-350. |
19 | Di Z C, Cao Y, Yang F L, et al. Thermodynamic analysis on the parametric optimization of a novel chemical looping methane reforming in the separated productions of H2 and CO[J]. Energy Conversion and Management, 2019, 192: 171-179. |
20 | 郭豪. 高炉喷吹煤气后热平衡变化规律的研究[D]. 唐山: 河北理工大学, 2005. |
Guo H. The research of heat balance alternation rules[D]. Tangshan: Hebei Polytechnic University, 2005. | |
21 | 饶昌润, 毕学工, 田志兵, 等. 高炉喷吹焦炉煤气降焦效果的数值分析[J]. 炼铁, 2011, 30(4): 52-55. |
Rao C R, Bi X G, Tian Z B, et al. Numerical analysis of coke reduction effect of coke oven gas injection into blast furnace[J]. Ironmaking, 2011, 30(4): 52-55. | |
22 | 兰臣臣, 吕庆, 刘小杰, 等. 喷吹煤气高炉冶炼的极限焦比研究[J]. 矿产综合利用, 2019(1): 135-140. |
Lan C C, Lyu Q, Liu X J, et al. Study on the limit of coke rate in gas-injection blast furnace[J]. Multipurpose Utilization of Mineral Resources, 2019(1): 135-140. | |
23 | 李建鹏. 喷吹煤气高炉工艺中煤造气合理H2含量的研究[D]. 唐山: 华北理工大学, 2016. |
Li J P. Study on reasonable H2 content of gas in the gas-injection BF process[D]. Tangshan: North China University of Science and Technology, 2016. | |
24 | 张琦, 沈佳林, 籍杨梅. 典型钢铁制造流程碳排放及碳中和实施路径[J]. 钢铁, 2023, 58(2): 173-187. |
Zhang Q, Shen J L, Ji Y M. Analysis of carbon emissions in typical iron- and steelmaking process and implementation path research of carbon neutrality[J]. Iron & Steel, 2023, 58(2): 173-187. | |
25 | 刘宏强, 付建勋, 刘思雨, 等. 钢铁生产过程二氧化碳排放计算方法与实践[J]. 钢铁, 2016, 51(4): 74-82. |
Liu H Q, Fu J X, Liu S Y, et al. Calculation methods and application of carbon dioxide emission during steel-making process[J]. Iron & Steel, 2016, 51(4): 74-82. | |
26 | 高建军, 郭培民. 高炉富氧喷吹焦炉煤气对CO2减排规律研究[J]. 钢铁钒钛, 2010, 31(3): 1-5. |
Gao J J, Guo P M. Numerical simulation of injection of coke oven gas with oxygen enrichment to the blast furnace[J]. Iron Steel Vanadium Titanium, 2010, 31(3): 1-5. | |
27 | 邹忠平, 郭宪臻, 王刚, 等. 高炉CO2排放量的计算方法探讨[C]//第八届(2011)中国钢铁年会论文集. 北京, 2011: 2062-2067. |
Zou Z P, Guo X Z, Wang G, et al Discussion on the calculation method of CO2 emissions from blast furnaces [C]//Proceedings of the 8th (2011) China Steel Annual Conference. Beijing, 2011: 2062-2067. | |
28 | 薛庆国, 韩毅华, 王静松, 等. 结合CCS的炉顶煤气循环—氧气鼓风高炉CO2减排分析[J]. 钢铁, 2011, 46(8): 1-6. |
Xue Q G, Han Y H, Wang J S, et al. Analysis of CO2 emission reduction in top gas recycling-oxygen blast furnace combine with CCS[J]. Iron & Steel, 2011, 46(8): 1-6. | |
29 | Liu S, Liu X J, Lyu Q, et al. Study on the appropriate production parameters of a gas-injection blast furnace[J]. High Temperature Materials and Processes, 2020, 39: 10-25. |
30 | 董择上, 薛庆国, 左海滨, 等. 氧气高炉喷吹焦炉气数学模型[J]. 钢铁, 2017, 52(4): 18-24. |
Dong Z S, Xue Q G, Zuo H B, et al. Mathematical model analysis on coke oven gas injection into oxygen blast furnace[J]. Iron & Steel, 2017, 52(4): 18-24. |
[1] | Mengyao KOU, Fangfei ZHENG, Wen XU, Na GUO, Bing LIAO. Determination of tetracycline degradation by alkali-catalyzed hydrogen peroxide system: law of action and mechanism analysis [J]. CIESC Journal, 2024, 75(6): 2362-2374. |
[2] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[3] | Jiayu XU, Feiguo CHEN, Ji XU, Wei GE. Multiscale mixing index for granular systems [J]. CIESC Journal, 2024, 75(6): 2214-2221. |
[4] | Guangyu ZHANG, Ranfei FU, Bing SUN, Juncong YUAN, Xiang FENG, Chaohe YANG, Wei XU. Synthesis of propylene carbonate from CO2 and propylene oxide: hydrogen bond activation strategy [J]. CIESC Journal, 2024, 75(6): 2243-2251. |
[5] | Yanling CHEN, Bingzhi YUAN, Liwei WANG, Chen ZHANG, Hanyu ZHU. Study on the adsorption kinetics of metal chloride-ammonia working fluid pair under non-equilibrium conditions [J]. CIESC Journal, 2024, 75(6): 2252-2261. |
[6] | Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM [J]. CIESC Journal, 2024, 75(5): 1816-1829. |
[7] | Di WANG, Weiqian CHEN, Lingfang SUN, Yunlong ZHOU. Research of dynamic characteristics of photothermal coupled transcritical compressed carbon dioxide energy storage cycle [J]. CIESC Journal, 2024, 75(5): 2047-2059. |
[8] | Xinzhe PEI, Zhuxing SUN, Yuxiang LIN, Chaoyang ZHANG, Yong QIAN, Xingcai LYU. Study of anode materials for electrocatalytic decomposition of liquid ammonia [J]. CIESC Journal, 2024, 75(5): 1843-1854. |
[9] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
[10] | Zhihong HUANG, Li ZHOU, Shiyang CHAI, Xu JI. Integrating optimization of hydrogenation units in multi-period hydrogen network [J]. CIESC Journal, 2024, 75(5): 1951-1965. |
[11] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[12] | Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance [J]. CIESC Journal, 2024, 75(4): 1533-1542. |
[13] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[14] | Mengqi LIU, Kai WANG, Guangsheng LUO. Fundamental research on microdispersion based on artificial intelligence [J]. CIESC Journal, 2024, 75(4): 1096-1104. |
[15] | Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed [J]. CIESC Journal, 2024, 75(4): 1497-1507. |
Viewed | ||||||
Full text 168
|
|
|||||
Abstract |
|
|||||