CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1230-1242.DOI: 10.11949/0438-1157.20240567
• Energy and environmental engineering • Previous Articles Next Articles
Wenzhi DAI(), Xiongjian SHEN, Xiaobo SONG, Xinle YANG
Received:
2024-05-27
Revised:
2024-09-07
Online:
2025-03-28
Published:
2025-03-25
Contact:
Wenzhi DAI
通讯作者:
戴文智
作者简介:
戴文智(1979—),男,博士,副教授,dwz5470@163.com
基金资助:
CLC Number:
Wenzhi DAI, Xiongjian SHEN, Xiaobo SONG, Xinle YANG. Environmental analysis of biomass double-stage evaporation double-regenerative organic Rankine cycle system[J]. CIESC Journal, 2025, 76(3): 1230-1242.
戴文智, 沈雄健, 宋晓博, 杨新乐. 生物质双级蒸发双回热有机朗肯循环系统环境分析[J]. 化工学报, 2025, 76(3): 1230-1242.
燃料成分 | 质量分数/% |
---|---|
C | 48.30 |
H | 7.08 |
N | 38.50 |
O | 5.55 |
S | 0.57 |
H2O | 8.7 |
Table 1 Characteristics of biomass fuel[18]
燃料成分 | 质量分数/% |
---|---|
C | 48.30 |
H | 7.08 |
N | 38.50 |
O | 5.55 |
S | 0.57 |
H2O | 8.7 |
设备 | 材料质量分数/% | 环境影响/(Pts/kg) | 质量/t | |||
---|---|---|---|---|---|---|
制造 | 运行 | 回收 | 汇总 | |||
空气预热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 138.4 |
生物质锅炉 | 高合金钢/70%;低合成钢/30% | 745.5 | 20.0 | -70 | 695.5 | 3889.0 |
蒸发器1 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 59.6 |
蒸发器2 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 425.0 |
涡轮 | 钢/25%;高合金钢/75% | 704.0 | 11.7 | -70 | 645.7 | 550.0 |
冷凝器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 850.0 |
回热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 80.7 |
混合回热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 150.3 |
泵1 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 1.75 |
泵2 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 2.5 |
泵3 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 1.2 |
Table 2 Environmental impact of each system component
设备 | 材料质量分数/% | 环境影响/(Pts/kg) | 质量/t | |||
---|---|---|---|---|---|---|
制造 | 运行 | 回收 | 汇总 | |||
空气预热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 138.4 |
生物质锅炉 | 高合金钢/70%;低合成钢/30% | 745.5 | 20.0 | -70 | 695.5 | 3889.0 |
蒸发器1 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 59.6 |
蒸发器2 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 425.0 |
涡轮 | 钢/25%;高合金钢/75% | 704.0 | 11.7 | -70 | 645.7 | 550.0 |
冷凝器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 850.0 |
回热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 80.7 |
混合回热器 | 钢/26%;高合金钢/74% | 695.8 | 12.1 | -70 | 637.9 | 150.3 |
泵1 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 1.75 |
泵2 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 2.5 |
泵3 | 钢/27%;铸铁/64%;铜/8%;铝/1% | 296.6 | 16.9 | -70 | 243.5 | 1.2 |
设备 | 平衡方程 | 辅助方程 |
---|---|---|
空气预热器 | ||
生物质锅炉 | ||
蒸发器1 | ||
蒸发器2 | ||
涡轮 | ||
冷凝器 | ||
回热器 | ||
混合回热器 | ||
泵1 | ||
泵2 | ||
泵3 |
Table 3 Component environmental exergy balance equation and auxiliary equations
设备 | 平衡方程 | 辅助方程 |
---|---|---|
空气预热器 | ||
生物质锅炉 | ||
蒸发器1 | ||
蒸发器2 | ||
涡轮 | ||
冷凝器 | ||
回热器 | ||
混合回热器 | ||
泵1 | ||
泵2 | ||
泵3 |
评价指标 | 常规㶲环境法 | 增强㶲环境法 |
---|---|---|
环境总影响 | ||
㶲损率 | ||
环境影响绩效 | ||
环境㶲影响因子 | ||
净输出功对环境影响 |
Table 4 System environmental impact assessment indicators[27-28]
评价指标 | 常规㶲环境法 | 增强㶲环境法 |
---|---|---|
环境总影响 | ||
㶲损率 | ||
环境影响绩效 | ||
环境㶲影响因子 | ||
净输出功对环境影响 |
参数 | 数值 |
---|---|
热源温度 | 448.15[ |
冷却水入口温度 | 298.15 |
冷却水出口温度 | 308.15 |
蒸发器1蒸发温度 | 415.15 |
蒸发器2蒸发温度 | 400.15 |
环境温度 | 298.15 |
环境压力 | 101.3 |
生物质锅炉排气温度 | 439.65[ |
有机流体 | R245fa |
锅炉输入热负荷 | 3000 |
燃料的低热值 | 17200[ |
Table 5 System constant parameters
参数 | 数值 |
---|---|
热源温度 | 448.15[ |
冷却水入口温度 | 298.15 |
冷却水出口温度 | 308.15 |
蒸发器1蒸发温度 | 415.15 |
蒸发器2蒸发温度 | 400.15 |
环境温度 | 298.15 |
环境压力 | 101.3 |
生物质锅炉排气温度 | 439.65[ |
有机流体 | R245fa |
锅炉输入热负荷 | 3000 |
燃料的低热值 | 17200[ |
组件 | 指标参数 | 实际 | 理想 | 不可避免 |
---|---|---|---|---|
空气预热器 | 5 | 0 | 0.5 | |
蒸发器 | 5 | 0 | 0.5 | |
冷凝器 | 5 | 0 | 0.5 | |
锅炉 | 80 | 100 | 90 | |
涡轮 | 75 | 100 | 90 | |
回热器 | 80 | 100 | 90 | |
混合回热器 | 80 | 100 | 90 | |
泵 | 70 | 100 | 90 |
Table 6 Cyclic operating conditions[30-31]
组件 | 指标参数 | 实际 | 理想 | 不可避免 |
---|---|---|---|---|
空气预热器 | 5 | 0 | 0.5 | |
蒸发器 | 5 | 0 | 0.5 | |
冷凝器 | 5 | 0 | 0.5 | |
锅炉 | 80 | 100 | 90 | |
涡轮 | 75 | 100 | 90 | |
回热器 | 80 | 100 | 90 | |
混合回热器 | 80 | 100 | 90 | |
泵 | 70 | 100 | 90 |
参数 | Pentane | R134a | ||
---|---|---|---|---|
文献[ | 本文 | 文献[ | 本文 | |
423.15 | 423.15 | 393.15 | 393.15 | |
293.15 | 293.15 | 297.13 | 297.15 | |
380.15 | 180.15 | 340.90 | 340.90 | |
311.25 | 311.25 | 303.15 | 303.15 | |
6.3 | 6.3 | 10 | ||
275.15 | 275.15 | 283.15 | 283.15 | |
6.93 | 6.89 | 20.00 | 20.12 | |
1.09 | 1.07 | 7.70 | 7.67 | |
11.69 | 11.73 | 7.48 | 7.40 |
Table 7 Model validation data parameters
参数 | Pentane | R134a | ||
---|---|---|---|---|
文献[ | 本文 | 文献[ | 本文 | |
423.15 | 423.15 | 393.15 | 393.15 | |
293.15 | 293.15 | 297.13 | 297.15 | |
380.15 | 180.15 | 340.90 | 340.90 | |
311.25 | 311.25 | 303.15 | 303.15 | |
6.3 | 6.3 | 10 | ||
275.15 | 275.15 | 283.15 | 283.15 | |
6.93 | 6.89 | 20.00 | 20.12 | |
1.09 | 1.07 | 7.70 | 7.67 | |
11.69 | 11.73 | 7.48 | 7.40 |
设备 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
空气预热器 | 37.42 | 18.24 | 19.18 | 48.74 | 0.217 | 0.475 | 14.98 | 0.552 | 15.53 | |
锅炉 | 3346.20 | 1485.70 | 1860.50 | 44.40 | 0.218 | 0.332 | 1456.83 | 16.903 | 184.88 | 1658.62 |
蒸发器1 | 404.39 | 373.99 | 30.40 | 92.48 | 0.348 | 0.377 | 38.09 | 0.238 | 38.33 | |
蒸发器2 | 247.13 | 235.47 | 11.66 | 95.28 | 0.348 | 0.373 | 14.61 | 1.694 | 16.30 | |
涡轮 | 1356.04 | 1065.50 | 290.54 | 78.57 | 0.228 | 0.290 | 238.50 | 2.219 | 240.72 | |
冷凝器 | 267.40 | 91.73 | 175.67 | 34.30 | 2.854 | 8.336 | 1804.75 | 3.388 | 1808.14 | |
回热器 | 38.58 | 20.01 | 18.57 | 51.87 | 0.076 | 0.162 | 5.05 | 0.322 | 5.37 | |
混合回热器 | 11126.56 | 11041.83 | 84.73 | 99.24 | 0.051 | 0.053 | 15.56 | 0.599 | 16.15 | |
泵1 | 2.59 | 1.85 | 0.74 | 71.44 | 0.291 | 0.409 | 0.78 | 0.003 | 0.78 | |
泵2 | 5.69 | 4.29 | 1.40 | 75.51 | 0.291 | 0.386 | 1.46 | 0.004 | 1.46 | |
泵3 | 0.93 | 0.72 | 0.21 | 77.65 | 0.291 | 0.377 | 0.22 | 0.002 | 0.22 |
Table 8 Conventional exergy analysis results
设备 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
空气预热器 | 37.42 | 18.24 | 19.18 | 48.74 | 0.217 | 0.475 | 14.98 | 0.552 | 15.53 | |
锅炉 | 3346.20 | 1485.70 | 1860.50 | 44.40 | 0.218 | 0.332 | 1456.83 | 16.903 | 184.88 | 1658.62 |
蒸发器1 | 404.39 | 373.99 | 30.40 | 92.48 | 0.348 | 0.377 | 38.09 | 0.238 | 38.33 | |
蒸发器2 | 247.13 | 235.47 | 11.66 | 95.28 | 0.348 | 0.373 | 14.61 | 1.694 | 16.30 | |
涡轮 | 1356.04 | 1065.50 | 290.54 | 78.57 | 0.228 | 0.290 | 238.50 | 2.219 | 240.72 | |
冷凝器 | 267.40 | 91.73 | 175.67 | 34.30 | 2.854 | 8.336 | 1804.75 | 3.388 | 1808.14 | |
回热器 | 38.58 | 20.01 | 18.57 | 51.87 | 0.076 | 0.162 | 5.05 | 0.322 | 5.37 | |
混合回热器 | 11126.56 | 11041.83 | 84.73 | 99.24 | 0.051 | 0.053 | 15.56 | 0.599 | 16.15 | |
泵1 | 2.59 | 1.85 | 0.74 | 71.44 | 0.291 | 0.409 | 0.78 | 0.003 | 0.78 | |
泵2 | 5.69 | 4.29 | 1.40 | 75.51 | 0.291 | 0.386 | 1.46 | 0.004 | 1.46 | |
泵3 | 0.93 | 0.72 | 0.21 | 77.65 | 0.291 | 0.377 | 0.22 | 0.002 | 0.22 |
组件 | ||||||||
---|---|---|---|---|---|---|---|---|
空气预热器 | 15.13 | -0.15 | 14.60 | 0.37 | 13.29 | 1.32 | 1.84 | -1.47 |
生物质锅炉 | 1449.92 | 6.91 | 1395.37 | 61.46 | 1333.23 | 62.15 | 116.70 | -55.24 |
蒸发器1 | 42.76 | -4.67 | 41.30 | -3.21 | 37.15 | 4.15 | 5.61 | -8.83 |
蒸发器2 | 7.28 | 7.33 | 2.68 | 11.93 | 2.44 | 0.25 | 4.85 | 7.08 |
涡轮 | 124.52 | 113.98 | 51.76 | 186.74 | 43.27 | 8.49 | 81.25 | 105.49 |
冷凝器 | 728.94 | 1075.81 | 415.00 | 1389.75 | 407.09 | 7.91 | 321.84 | 1067.91 |
回热器 | 0.93 | 4.12 | 0.75 | 4.30 | 0.59 | 0.16 | 0.34 | 3.96 |
混合回热器 | 14.35 | 1.20 | 9.04 | 6.52 | 8.94 | 0.10 | 5.41 | 1.11 |
泵1 | 3.69 | -2.92 | 0.96 | -0.19 | 0.97 | -0.01 | 2.72 | -2.91 |
泵2 | 6.78 | -5.32 | 1.77 | -0.31 | 1.86 | -0.09 | 4.92 | -5.23 |
泵3 | 3.32 | -3.10 | 0.86 | -0.64 | 0.93 | -0.07 | 2.39 | -3.03 |
Table 9 Advanced exergy analysis results
组件 | ||||||||
---|---|---|---|---|---|---|---|---|
空气预热器 | 15.13 | -0.15 | 14.60 | 0.37 | 13.29 | 1.32 | 1.84 | -1.47 |
生物质锅炉 | 1449.92 | 6.91 | 1395.37 | 61.46 | 1333.23 | 62.15 | 116.70 | -55.24 |
蒸发器1 | 42.76 | -4.67 | 41.30 | -3.21 | 37.15 | 4.15 | 5.61 | -8.83 |
蒸发器2 | 7.28 | 7.33 | 2.68 | 11.93 | 2.44 | 0.25 | 4.85 | 7.08 |
涡轮 | 124.52 | 113.98 | 51.76 | 186.74 | 43.27 | 8.49 | 81.25 | 105.49 |
冷凝器 | 728.94 | 1075.81 | 415.00 | 1389.75 | 407.09 | 7.91 | 321.84 | 1067.91 |
回热器 | 0.93 | 4.12 | 0.75 | 4.30 | 0.59 | 0.16 | 0.34 | 3.96 |
混合回热器 | 14.35 | 1.20 | 9.04 | 6.52 | 8.94 | 0.10 | 5.41 | 1.11 |
泵1 | 3.69 | -2.92 | 0.96 | -0.19 | 0.97 | -0.01 | 2.72 | -2.91 |
泵2 | 6.78 | -5.32 | 1.77 | -0.31 | 1.86 | -0.09 | 4.92 | -5.23 |
泵3 | 3.32 | -3.10 | 0.86 | -0.64 | 0.93 | -0.07 | 2.39 | -3.03 |
组件k | 组件r | (Pts/h) | (Pts/h) | 组件k | 组件r | (Pts/h) | (Pts/h) | (Pts/h) | |
---|---|---|---|---|---|---|---|---|---|
空气预热器 | 生物质锅炉 | -0.152 | -0.041 | -0.112 | 回热器 | 蒸发器1 | 0.118 | 0.072 | 0.046 |
生物质锅炉 | 空气预热器 | 6.908 | 22.554 | -15.646 | 蒸发器2 | -0.071 | -0.044 | -0.028 | |
蒸发器1 | 蒸发器2 | 2.720 | 0.387 | 2.333 | 涡轮 | 2.223 | 4.758 | -2.535 | |
泵2 | 0.148 | 0.021 | 0.127 | 冷凝器 | 2.003 | 4.373 | -2.370 | ||
泵3 | 1.286 | 1.676 | -0.390 | 泵1 | -0.016 | -0.027 | 0.012 | ||
蒸发器2 | 蒸发器1 | 7.924 | 8.047 | -0.124 | 泵2 | 0.003 | 0.002 | 0.001 | |
泵2 | -0.029 | -0.019 | -0.010 | 泵3 | 0.004 | 0.003 | 0.002 | ||
泵3 | 0.249 | 0.251 | -0.002 | 混合回热器 | 蒸发器1 | 2.046 | 0.806 | 1.240 | |
涡轮 | 蒸发器1 | 16.856 | 14.663 | 2.194 | 蒸发器2 | -1.235 | -0.486 | -0.748 | |
蒸发器2 | -10.173 | -8.849 | -1.324 | 涡轮 | 0.554 | 0.579 | -0.025 | ||
冷凝器 | -9.037 | -8.112 | -0.924 | 冷凝器 | -0.826 | -0.867 | 0.041 | ||
泵2 | 0.388 | 0.412 | -0.024 | 回热器 | -1.301 | -1.359 | 0.058 | ||
泵3 | 0.594 | 0.665 | -0.070 | 泵2 | 0.045 | 0.018 | 0.027 | ||
冷凝器 | 蒸发器1 | 103.899 | 134.004 | -30.105 | 泵3 | 0.072 | 0.028 | 0.044 | |
蒸发器2 | -62.705 | -80.874 | 18.169 | 泵1 | 蒸发器1 | 0.526 | 0.546 | -0.020 | |
涡轮 | 46.232 | 59.627 | -13.396 | 蒸发器2 | -0.317 | -0.329 | 0.012 | ||
泵1 | 1.136 | 1.465 | -0.329 | 冷凝器 | -0.188 | -0.225 | 0.036 | ||
泵2 | 2.264 | 2.920 | -0.656 | 泵2 | 0.011 | 0.012 | 0.000 | ||
泵3 | 3.663 | 4.724 | -1.061 | 泵3 | 0.019 | 0.019 | -0.001 | ||
泵2 | 蒸发器1 | 0.974 | 0.938 | 0.036 | 泵3 | 蒸发器1 | -0.351 | -0.328 | -0.023 |
蒸发器2 | -0.590 | -0.568 | -0.022 | 蒸发器2 | 0.211 | 0.197 | 0.014 | ||
泵3 | 0.034 | 0.033 | 0.001 | 泵2 | 0.011 | 0.011 | 0.001 |
Table 10 The relationship between the components of exogenous exergy loss and environmental impact
组件k | 组件r | (Pts/h) | (Pts/h) | 组件k | 组件r | (Pts/h) | (Pts/h) | (Pts/h) | |
---|---|---|---|---|---|---|---|---|---|
空气预热器 | 生物质锅炉 | -0.152 | -0.041 | -0.112 | 回热器 | 蒸发器1 | 0.118 | 0.072 | 0.046 |
生物质锅炉 | 空气预热器 | 6.908 | 22.554 | -15.646 | 蒸发器2 | -0.071 | -0.044 | -0.028 | |
蒸发器1 | 蒸发器2 | 2.720 | 0.387 | 2.333 | 涡轮 | 2.223 | 4.758 | -2.535 | |
泵2 | 0.148 | 0.021 | 0.127 | 冷凝器 | 2.003 | 4.373 | -2.370 | ||
泵3 | 1.286 | 1.676 | -0.390 | 泵1 | -0.016 | -0.027 | 0.012 | ||
蒸发器2 | 蒸发器1 | 7.924 | 8.047 | -0.124 | 泵2 | 0.003 | 0.002 | 0.001 | |
泵2 | -0.029 | -0.019 | -0.010 | 泵3 | 0.004 | 0.003 | 0.002 | ||
泵3 | 0.249 | 0.251 | -0.002 | 混合回热器 | 蒸发器1 | 2.046 | 0.806 | 1.240 | |
涡轮 | 蒸发器1 | 16.856 | 14.663 | 2.194 | 蒸发器2 | -1.235 | -0.486 | -0.748 | |
蒸发器2 | -10.173 | -8.849 | -1.324 | 涡轮 | 0.554 | 0.579 | -0.025 | ||
冷凝器 | -9.037 | -8.112 | -0.924 | 冷凝器 | -0.826 | -0.867 | 0.041 | ||
泵2 | 0.388 | 0.412 | -0.024 | 回热器 | -1.301 | -1.359 | 0.058 | ||
泵3 | 0.594 | 0.665 | -0.070 | 泵2 | 0.045 | 0.018 | 0.027 | ||
冷凝器 | 蒸发器1 | 103.899 | 134.004 | -30.105 | 泵3 | 0.072 | 0.028 | 0.044 | |
蒸发器2 | -62.705 | -80.874 | 18.169 | 泵1 | 蒸发器1 | 0.526 | 0.546 | -0.020 | |
涡轮 | 46.232 | 59.627 | -13.396 | 蒸发器2 | -0.317 | -0.329 | 0.012 | ||
泵1 | 1.136 | 1.465 | -0.329 | 冷凝器 | -0.188 | -0.225 | 0.036 | ||
泵2 | 2.264 | 2.920 | -0.656 | 泵2 | 0.011 | 0.012 | 0.000 | ||
泵3 | 3.663 | 4.724 | -1.061 | 泵3 | 0.019 | 0.019 | -0.001 | ||
泵2 | 蒸发器1 | 0.974 | 0.938 | 0.036 | 泵3 | 蒸发器1 | -0.351 | -0.328 | -0.023 |
蒸发器2 | -0.590 | -0.568 | -0.022 | 蒸发器2 | 0.211 | 0.197 | 0.014 | ||
泵3 | 0.034 | 0.033 | 0.001 | 泵2 | 0.011 | 0.011 | 0.001 |
设备 | |||
---|---|---|---|
空气预热器 | 1.843 | -0.041 | 1.802 |
生物质锅炉 | 116.695 | 22.554 | 139.249 |
蒸发器1 | 5.613 | 158.747 | 164.360 |
蒸发器2 | 4.846 | -90.567 | -85.721 |
涡轮 | 81.247 | 64.964 | 146.211 |
冷凝器 | 321.843 | -4.830 | 317.013 |
回热器 | 0.237 | -1.359 | -1.122 |
混合回热器 | 5.411 | 0.000 | 5.411 |
泵1 | 2.725 | 1.438 | 4.163 |
泵2 | 4.919 | 3.376 | 8.295 |
泵3 | 2.389 | 7.398 | 9.787 |
Table 11 Summary of avoidable environmental impacts of advanced exergy components
设备 | |||
---|---|---|---|
空气预热器 | 1.843 | -0.041 | 1.802 |
生物质锅炉 | 116.695 | 22.554 | 139.249 |
蒸发器1 | 5.613 | 158.747 | 164.360 |
蒸发器2 | 4.846 | -90.567 | -85.721 |
涡轮 | 81.247 | 64.964 | 146.211 |
冷凝器 | 321.843 | -4.830 | 317.013 |
回热器 | 0.237 | -1.359 | -1.122 |
混合回热器 | 5.411 | 0.000 | 5.411 |
泵1 | 2.725 | 1.438 | 4.163 |
泵2 | 4.919 | 3.376 | 8.295 |
泵3 | 2.389 | 7.398 | 9.787 |
设备 | |||
---|---|---|---|
空气预热器 | 1.948 | -0.055 | 1.893 |
生物质锅炉 | 139.066 | 22.553 | 161.619 |
蒸发器1 | 5.637 | 158.774 | 164.411 |
蒸发器2 | 4.953 | -90.581 | -85.628 |
涡轮 | 81.282 | 64.966 | 146.248 |
冷凝器 | 321.886 | -4.834 | 317.052 |
回热器 | 0.250 | -1.359 | -1.109 |
混合回热器 | 5.497 | 0 | 5.497 |
泵1 | 2.735 | 1.438 | 4.173 |
泵2 | 4.933 | 3.348 | 8.281 |
泵3 | 2.416 | 7.400 | 9.816 |
Table 12 Enhanced total avoided environmental impact results of exergy law components
设备 | |||
---|---|---|---|
空气预热器 | 1.948 | -0.055 | 1.893 |
生物质锅炉 | 139.066 | 22.553 | 161.619 |
蒸发器1 | 5.637 | 158.774 | 164.411 |
蒸发器2 | 4.953 | -90.581 | -85.628 |
涡轮 | 81.282 | 64.966 | 146.248 |
冷凝器 | 321.886 | -4.834 | 317.052 |
回热器 | 0.250 | -1.359 | -1.109 |
混合回热器 | 5.497 | 0 | 5.497 |
泵1 | 2.735 | 1.438 | 4.173 |
泵2 | 4.933 | 3.348 | 8.281 |
泵3 | 2.416 | 7.400 | 9.816 |
1 | Ren J, Qian Z Q, Fei C G, et al. Thermodynamic, exergoeconomic, and exergoenvironmental analysis of a combined cooling and power system for natural gas-biomass dual fuel gas turbine waste heat recovery[J]. Energy, 2023, 269: 126676. |
2 | 闫沛伟, 张曼铮, 肖猛, 等. 地热能有机朗肯循环系统控制策略研究[J]. 化工学报, 2023, 74(12): 4810-4819. |
Yan P W, Zhang M Z, Xiao M, et al. Study on the control strategy of a geothermal organic Rankine cycle system[J]. CIESC Journal, 2023, 74(12): 4810-4819. | |
3 | Feng J S, Cheng X N, Yan Y R, et al. Thermodynamic and thermo-economic analysis, performance comparison and parameter optimization of basic and regenerative organic Rankine cycles for waste heat recovery[J]. Case Studies in Thermal Engineering, 2023, 52: 103816. |
4 | Yang M H. Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle[J]. Energy, 2016, 113: 1109-1124. |
5 | Budovich L S. Energy, exergy analysis in a hybrid power and hydrogen production system using biomass and organic Rankine cycle[J]. International Journal of Thermofluids, 2024, 21: 100584. |
6 | Qi X R, Yang C S, Huang M Y, et al. Conventional and advanced exergy-exergoeconomic-exergoenvironmental analyses of an organic Rankine cycle integrated with solar and biomass energy sources[J]. Energy, 2024, 288: 129657. |
7 | Wen L H, Liu H Y, Heydarian D. Multi-objective grey wolf optimization of four different geothermal flash-organic Rankine power cycles[J]. Process Safety and Environmental Protection, 2023, 180: 223-241. |
8 | 葛众, 熊肖, 李健, 等. 基于LCA的有机朗肯循环技术环保性能研究综述[J]. 工程热物理学报, 2024, 45(8): 2262-2276. |
Ge Z, Xiong X, Li J, et al. A review on full life cycle research of organic Rankine cycle technology[J]. Journal of Engineering Thermophysics, 2024, 45(8): 2262-2276. | |
9 | 董志坚, 叶学民, 宋睿哲, 等. 集成ORC的太阳能辅助燃煤碳捕集发电系统全生命周期分析[J]. 动力工程学报, 2022, 42(7): 647-656. |
Dong Z J, Ye X M, Song R Z, et al. Life cycle assessment of coal-fired solar-assisted carbon capture power generation system integrated with ORC[J]. Journal of Chinese Society of Power Engineering, 2022, 42(7): 647-656. | |
10 | 王华荣. 有机朗肯循环多目标参数优化及经济环境影响评价[D]. 北京: 华北电力大学, 2017. |
Wang H R. Multi-objective parameter optimization and economic and environmental impact assessment of organic Rankine cycle[D]. Beijing: North China Electric Power University, 2017. | |
11 | Heberle F, Schifflechner C, Brüggemann D. Life cycle assessment of organic Rankine cycles for geothermal power generation considering low-GWP working fluids[J]. Geothermics, 2016, 64: 392-400. |
12 | Peng P, Yuan Y B, Ge H, et al. Thermodynamic and life cycle assessment analysis of polymer-containing oily sludge supercritical water gasification system combined with organic Rankine cycle[J]. Energy, 2024, 305: 132359. |
13 | Akbulut U, Utlu Z, Kincay O. Exergoenvironmental and exergoeconomic analyses of a vertical type ground source heat pump integrated wall cooling system[J]. Applied Thermal Engineering, 2016, 102: 904-921. |
14 | Tsatsaronis G, Morosuk T. A general exergy-based method for combining a cost analysis with an environmental impact analysis(part Ⅰ):Theoretical development [C]//ASME 2008 International Mechanical Engineering Congress and Exposition. Boston, Massachusetts, USA, 2009: 453-462. |
15 | Tsatsaronis G, Morosuk T. A general exergy-based method for combining a cost analysis with an environmental impact analysis(part Ⅱ):Application to a cogeneration system[C]//ASME 2008 International Mechanical Engineering Congress and Exposition, Boston, Massachusetts, USA, 2009: 463-469. |
16 | Boyaghchi F A, Chavoshi M, Sabeti V. Multi-generation system incorporated with PEM electrolyzer and dual ORC based on biomass gasification waste heat recovery: exergetic, economic and environmental impact optimizations[J]. Energy, 2018, 145: 38-51. |
17 | Ptasinski K J, Prins M J, Pierik A. Exergetic evaluation of biomass gasification[J]. Energy, 2007, 32(4): 568-574. |
18 | Al-Sulaiman F A, Dincer I, Hamdullahpur F. Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle[J]. Energy, 2012, 45(1): 975-985. |
19 | Zhu Y L, Li W Y, Li J, et al. Thermodynamic analysis and economic assessment of biomass-fired organic Rankine cycle combined heat and power system integrated with CO2 capture[J]. Energy Conversion and Management, 2020, 204: 112310. |
20 | 何超, 罗志云, 宋光武, 等. 天津市典型生物质固体燃料锅炉NO、CO排放研究[J]. 环境工程, 2017, 35(4): 86-90. |
He C, Luo Z Y, Song G W, et al. Research on the combustion emission of NO and CO from typical biomass soild fuel boilers in Tianjin[J]. Environmental Engineering, 2017, 35(4): 86-90. | |
21 | Başoğul Y. Environmental assessment of a binary geothermal sourced power plant accompanied by exergy analysis[J]. Energy Conversion and Management, 2019, 195: 492-501. |
22 | Cavalcanti E J C. Exergoeconomic and exergoenvironmental analyses of an integrated solar combined cycle system[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 507-519. |
23 | Mousavi Rabeti S A, Khoshgoftar Manesh M H, Amidpour M. An innovative optimal 4E solar-biomass waste polygeneration system for power, methanol, and freshwater production[J]. Journal of Cleaner Production, 2023, 412: 137267. |
24 | Mehrabadi Z K, Boyaghchi F A. Exergoeconomic and exergoenvironmental analyses and optimization of a new low-CO2 emission energy system based on gasification-solid oxide fuel cell to produce power and freshwater using various fuels[J]. Sustainable Production and Consumption, 2021, 26: 782-804. |
25 | Meyer L, Tsatsaronis G, Buchgeister J, et al. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems[J]. Energy, 2009, 34(1): 75-89. |
26 | Liu X, Yu K, Wan X, et al. Conventional and advanced exergy analyses of transcritical CO2 ejector refrigeration system equipped with thermoelectric subcooler[J]. Energy Reports, 2021, 7: 1765-1779. |
27 | Casas-Ledón Y, Spaudo F, Arteaga-Pérez L E. Exergoenvironmental analysis of a waste-based integrated combined cycle (WICC) for heat and power production[J]. Journal of Cleaner Production, 2017, 164: 187-197. |
28 | Hepbasli A, Keçebaş A. A comparative study on conventional and advanced exergetic analyses of geothermal district heating systems based on actual operational data[J]. Energy and Buildings, 2013, 61: 193-201. |
29 | 王毅, 杜金宇, 张全国, 等. 生物质锅炉多效烟气净化装置设计与性能研究[J]. 农业机械学报, 2018, 49(2): 313-318. |
Wang Y, Du J Y, Zhang Q G, et al. Research on multiple purification device design and performance of biomass boiler flue gas[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 313-318. | |
30 | Zeng J Q, Li Z Y, Peng Z Y. Advanced exergy analysis of solar absorption-subcooled compression hybrid cooling system[J]. International Journal of Green Energy, 2022, 19(3): 219-241. |
31 | Tian Y N, Zhang T, Xie N N, et al. Conventional and advanced exergy analysis of large-scale adiabatic compressed air energy storage system[J]. Journal of Energy Storage, 2023, 57: 106165. |
32 | Kazemi N, Samadi F. Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources[J]. Energy Conversion and Management, 2016, 121: 391-401. |
33 | Rayegan R, Tao Y X. A procedure to select working fluids for solar organic Rankine cycles (ORCs)[J]. Renewable Energy, 2011, 36(2): 659-670. |
[1] | Yanbei LIU, Ruoming WANG, Juan LIU, Taimoor Raza, Yuzheng LU, Rizwan Raza, Bin ZHU, Songbo LI, Shengli AN, Sining YUN. Preparation of CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ electrolyte and its property in semiconductor ionic fuel cells performance [J]. CIESC Journal, 2025, 76(3): 1353-1362. |
[2] | Ke QI, Di WANG, Zhe XIE, Dongsheng CHEN, Yunlong ZHOU, Lingfang SUN. Research on transient characteristics of solid oxide fuel cells considering coupling features of multiphysics fields [J]. CIESC Journal, 2025, 76(3): 1264-1274. |
[3] | Guojia YAO, Zhi WANG, Ang SU, Dongge FENG, Hong TANG, Lingfang SUN. Investigation of the effect of air coefficient on the combustion characteristics of pulverized coal pre-pyrolysis [J]. CIESC Journal, 2025, 76(3): 1243-1252. |
[4] | Jinning YANG, Weifan WANG, Dong XU, Yi LIU, Xiaohan WENG, Ye YUAN, Zhi WANG. Progress in the scale-up research of membrane technologies for industrial flue gas carbon capture [J]. CIESC Journal, 2025, 76(2): 504-518. |
[5] | Zihang ZHAI, Jie JIANG, Jinjin LI, Ling ZHAO, Zhenhao XI. Synthesis and properties of ternary random copolyester PBSF based on 2,5-furandicarboxylic acid [J]. CIESC Journal, 2025, 76(2): 868-878. |
[6] | Qiwo HAN, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Analysis of influence of operating temperature on water distribution, proton transport and performance of PEMFC [J]. CIESC Journal, 2025, 76(1): 374-384. |
[7] | Zhengang ZHAO, Mengyao ZHOU, Dian JIN, Dacheng ZHANG. Study on direct methanol fuel cell performance modification based on foam carbon diffusion layer [J]. CIESC Journal, 2024, 75(S1): 259-266. |
[8] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
[9] | Xinyue LU, Ruiying CHEN, Xiaxue JIANG, Hairui LIANG, Ge GAO, Zhengfang YE. Comparative study on liquid air energy storage system and liquid carbon dioxide energy storage system coupled with liquefied natural gas cold energy [J]. CIESC Journal, 2024, 75(9): 3297-3309. |
[10] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[11] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[12] | Xiaofeng HUANG, Zhaohui LIU, Fan YANG. Experimental investigation of high-density hydrocarbon fuel JP-10 on flow heat transfer and pyrolysis characteristics [J]. CIESC Journal, 2024, 75(8): 2917-2928. |
[13] | Fangming LYU, Zhiming BAO, Bowen WANG, Kui JIAO. Investigation on impact of gas diffusion layer intrusion into channel on water management in fuel cell [J]. CIESC Journal, 2024, 75(8): 2929-2938. |
[14] | Lou ZHU, Yangfan SONG, Meng WANG, Ruipeng SHI, Yanmin LI, Hongwei CHEN, Zhuo LIU, Xiang WEI. Power generation characteristics of central pulse gas-liquid-solid circulating fluidized bed microbial fuel cell [J]. CIESC Journal, 2024, 75(8): 2991-3001. |
[15] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 51
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||