CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4037-4047.DOI: 10.11949/0438-1157.20240589
• Reviews and monographs • Previous Articles Next Articles
Xueying WANG1(), Yongjin ZHOU1, Zongbao ZHAO1,2(
)
Received:
2024-05-31
Revised:
2024-08-14
Online:
2024-12-26
Published:
2024-11-25
Contact:
Zongbao ZHAO
通讯作者:
赵宗保
作者简介:
王雪颖(1988—),女,博士,副研究员,wangxueying@dicp.ac.cn
基金资助:
CLC Number:
Xueying WANG, Yongjin ZHOU, Zongbao ZHAO. Non-natural redox cofactors empowered biomanufacturing[J]. CIESC Journal, 2024, 75(11): 4037-4047.
王雪颖, 周雍进, 赵宗保. 非天然氧化还原辅酶赋能生物制造[J]. 化工学报, 2024, 75(11): 4037-4047.
酶 | 来源 | 突变体 | 天然辅酶 | 非天然 辅酶 | 催化效率 提高倍数① | 突变体辅酶偏好性② |
---|---|---|---|---|---|---|
苹果酸酶[ | Escherichia coli | L310R/Q401C | NAD+ | NCD+ | 55.2 | 429.4 |
D-乳酸脱氢酶[ | L. helveticus | V152R/I177K/N213I | NAD+ | NCD+ | 6.5 | 41.9 |
P450-BM3[ | B. megaterium | F87A/R966D/W1046S/Q976E/Q1004E | NADP+ | NCD+ | 1.1×103 | 30.8 |
亚磷酸脱氢酶[ | Ralstonia sp. | I151R | NAD+ | NCD+ | 0.57 | 3.1 |
亚磷酸脱氢酶[ | Ralstonia sp. | I151R/P176R/M207A | NAD+ | NCD+ | 0.16 | 45.3 |
甲酸脱氢酶[ | Pseudomonas sp. 101 | V198I/C256I/P260S/E261P/S381N/S383F | NAD+ | NCD+ | 85.6 | 424.2 |
甲醛脱氢酶[ | P. putida | A192R/L223V/L236V | NAD+ | NCD+ | 1.3 | 153.7 |
甲醇脱氢酶[ | B. stearothermophilus | Y171R/I196V/V237T/N240E/K241A | NAD+ | NCD+ | 11.3 | 429 |
葡萄糖脱氢酶[ | B. subtilis | I195R/A93K/Y39Q/S17E | NADP+ | NMN+ | 446.8 | 19.1 |
甘油醛-3-磷酸脱氢酶[ | S. mutans | P179K/F153S/S330R/I234E/G214E | NADP+ | NMN+ | 7.3 | 5.5 |
NADH氧化酶[ | L. pentosus | I158S/D177W/G178E/V240L/P362H/V395L | NAD+ | NMN+ | 10 | 0.5 |
谷胱甘肽还原酶[ | E. coli | I178T/R198M/R204L | NADP+ | NMN+ | 4 | 1.1×10-1 |
亚磷酸脱氢酶[ | P. stutzeri | A155N/E175A/A176F | NAD+ | NMN+ | 110 | 3.7×10-2 |
NADH氧化酶[ | L. lactits | I159T/D178N/A179F/I243E | NAD+ | NMN+ | 250 | 2.8 |
m-丁二醇脱氢酶[ | K. pneumoniae | M189T/Y34Q/A87K | NAD+ | NMN+ | 19 | 136.4 |
3α-羟基类固醇脱氢酶[ | Comamonas testosteroni | A70K | NAD+ | NMN+ | 8.7 | 4.4×104 |
P450-BM3[ | B. megaterium | S848R | NADP+ | NMN+ | 2.1 | — |
葡萄糖-6-磷酸脱氢酶[ | Z. mobilis | S25A/S115A/P118S/Y417H/M421L | NADP+ | NMN+ | 112 | 4.3×10-3 |
Table 1 Kinetic performance of wild type enzymes and mutants
酶 | 来源 | 突变体 | 天然辅酶 | 非天然 辅酶 | 催化效率 提高倍数① | 突变体辅酶偏好性② |
---|---|---|---|---|---|---|
苹果酸酶[ | Escherichia coli | L310R/Q401C | NAD+ | NCD+ | 55.2 | 429.4 |
D-乳酸脱氢酶[ | L. helveticus | V152R/I177K/N213I | NAD+ | NCD+ | 6.5 | 41.9 |
P450-BM3[ | B. megaterium | F87A/R966D/W1046S/Q976E/Q1004E | NADP+ | NCD+ | 1.1×103 | 30.8 |
亚磷酸脱氢酶[ | Ralstonia sp. | I151R | NAD+ | NCD+ | 0.57 | 3.1 |
亚磷酸脱氢酶[ | Ralstonia sp. | I151R/P176R/M207A | NAD+ | NCD+ | 0.16 | 45.3 |
甲酸脱氢酶[ | Pseudomonas sp. 101 | V198I/C256I/P260S/E261P/S381N/S383F | NAD+ | NCD+ | 85.6 | 424.2 |
甲醛脱氢酶[ | P. putida | A192R/L223V/L236V | NAD+ | NCD+ | 1.3 | 153.7 |
甲醇脱氢酶[ | B. stearothermophilus | Y171R/I196V/V237T/N240E/K241A | NAD+ | NCD+ | 11.3 | 429 |
葡萄糖脱氢酶[ | B. subtilis | I195R/A93K/Y39Q/S17E | NADP+ | NMN+ | 446.8 | 19.1 |
甘油醛-3-磷酸脱氢酶[ | S. mutans | P179K/F153S/S330R/I234E/G214E | NADP+ | NMN+ | 7.3 | 5.5 |
NADH氧化酶[ | L. pentosus | I158S/D177W/G178E/V240L/P362H/V395L | NAD+ | NMN+ | 10 | 0.5 |
谷胱甘肽还原酶[ | E. coli | I178T/R198M/R204L | NADP+ | NMN+ | 4 | 1.1×10-1 |
亚磷酸脱氢酶[ | P. stutzeri | A155N/E175A/A176F | NAD+ | NMN+ | 110 | 3.7×10-2 |
NADH氧化酶[ | L. lactits | I159T/D178N/A179F/I243E | NAD+ | NMN+ | 250 | 2.8 |
m-丁二醇脱氢酶[ | K. pneumoniae | M189T/Y34Q/A87K | NAD+ | NMN+ | 19 | 136.4 |
3α-羟基类固醇脱氢酶[ | Comamonas testosteroni | A70K | NAD+ | NMN+ | 8.7 | 4.4×104 |
P450-BM3[ | B. megaterium | S848R | NADP+ | NMN+ | 2.1 | — |
葡萄糖-6-磷酸脱氢酶[ | Z. mobilis | S25A/S115A/P118S/Y417H/M421L | NADP+ | NMN+ | 112 | 4.3×10-3 |
1 | Liu Y Z, Cruz-Morales P, Zargar A, et al. Biofuels for a sustainable future[J]. Cell, 2021, 184(6): 1636-1647. |
2 | Ajikumar P K, Xiao W H, Tyo K E J, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330(6000): 70-74. |
3 | Paddon C J, Keasling J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development[J]. Nature Reviews Microbiology, 2014, 12(5): 355-367. |
4 | Luo X, Reiter M A, d’Espaux L, et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast[J]. Nature, 2019, 567(7746): 123-126. |
5 | Luo Z W, Lee S Y. Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli [J]. Nature Communications, 2017, 8: 15689. |
6 | Yu H, Liao J C. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds[J]. Nature Communications, 2018, 9: 3992. |
7 | Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496, 528-532. |
8 | Wang M, Chen B Q, Fang Y M, et al. Cofactor engineering for more efficient production of chemicals and biofuels[J]. Biotechnology Advances, 2017, 35(8): 1032-1039. |
9 | Ying W H. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences[J]. Antioxidants & Redox Signaling, 2008, 10(2): 179-206. |
10 | Tan Z T, Zhu C J, Fu J W, et al. Regulating cofactor balance in vivo with a synthetic flavin analogue[J]. Angewandte Chemie International Edition, 2018, 57(50): 16464-16468. |
11 | Sellés Vidal L, Kelly C L, Mordaka P M, et al. Review of NAD(P)H-dependent oxidoreductases: properties, engineering and application[J]. Biochimica et Biophysica Acta, Proteins and Proteomics, 2018, 1866(2): 327-347. |
12 | Houtkooper R H, Cantó C, Wanders R J, et al. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways[J]. Endocrine Reviews, 2010, 31(2): 194-223. |
13 | Chen R B, Gao J Q, Yu W, et al. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast[J]. Nature Chemical Biology, 2022, 18(5): 520-529. |
14 | Gaspar P, Neves A R, Gasson M J, et al. High yields of 2,3-butanediol and mannitol in Lactococcus lactis through engineering of NAD⁺ cofactor recycling[J]. Applied and Environmental Microbiology, 2011, 77(19): 6826-6835. |
15 | Beyer N, Kulig J K, Fraaije M W, et al. Exploring PTDH-P450BM3 variants for the synthesis of drug metabolites[J]. Chembiochem, 2018, 19(4): 326-337. |
16 | Bommareddy R R, Chen Z, Rappert S, et al. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase[J]. Metabolic Engineering, 2014, 25: 30-37. |
17 | Holm A K, Blank L M, Oldiges M, et al. Metabolic and transcriptional response to cofactor perturbations in Escherichia coli [J]. Journal of Biological Chemistry, 2010, 285(23): 17498-17506. |
18 | Ulrich S M, Buzko O, Shah K, et al. Towards the engineering of an orthogonal protein kinase/nucleotide triphosphate pair[J]. Tetrahedron, 2000, 56(48): 9495-9502. |
19 | Wang R, Zheng W H, Yu H Q, et al. Labeling substrates of protein arginine methyltransferase with engineered enzymes and matched S-adenosyl-L-methionine analogues[J]. Journal of the American Chemical Society, 2011, 133(20): 7648-7651. |
20 | Huber T D, Clinger J A, Liu Y, et al. Methionine adenosyltransferase engineering to enable bioorthogonal platforms for AdoMet-utilizing enzymes[J]. ACS Chemical Biology, 2020, 15(3): 695-705. |
21 | Pandit A V, Srinivasan S, Mahadevan R. Redesigning metabolism based on orthogonality principles[J]. Nature Communications, 2017, 8: 15188. |
22 | Zachos I, Nowak C, Sieber V. Biomimetic cofactors and methods for their recycling[J]. Current Opinion in Chemical Biology, 2019, 49: 59-66. |
23 | Hou S H, Liu W J, Ji D B, et al. Synthesis of 1,2,3-triazole moiety-containing NAD analogs and their potential as redox cofactors[J]. Tetrahedron Letters, 2011, 52(44): 5855-5857. |
24 | Paul C E, Gargiulo S, Opperman D J, et al. Mimicking nature: synthetic nicotinamide cofactors for C ̿ C bioreduction using enoate reductases[J]. Organic Letters, 2013, 15(1): 180-183. |
25 | Knaus T, Paul C E, Levy C W, et al. Better than nature: nicotinamide biomimetics that outperform natural coenzymes[J]. Journal of the American Chemical Society, 2016, 138(3): 1033-1039. |
26 | Dai Z F, Zhang X N, Nasertorabi F, et al. Facile chemoenzymatic synthesis of a novel stable mimic of NAD[J]. Chemical Science, 2018, 9(44): 8337-8342. |
27 | Hallé F, Fin A, Rov ira A R, et al. Emissive synthetic cofactors: enzymatic interconversions of tzA analogues of ATP, NAD+, NADH, NADP+, and NADPH[J]. Angewandte Chemie International Edition, 2018, 57(4): 1087-1090. |
28 | Rovira A R, Fin A, Tor Y. Emissive synthetic cofactors: an isomorphic, isofunctional, and responsive NAD+ analogue[J]. Journal of the American Chemical Society, 2017, 139(44): 15556-15559. |
29 | Ji D B, Wang L, Liu W J, et al. Synthesis of NAD analogs to develop bioorthogonal redox system[J]. Science China Chemistry, 2013, 56(3): 296-300. |
30 | 万里. 酶催化合成NAD类似物[D]. 北京:中国科学院大学, 2022. |
Wan L. Enzymatic synthesis of NAD analogues[D]. Beijing: University of Chinese Academy of Sciences, 2022. | |
31 | Meng D D, Liu M X, Su H, et al. Coenzyme engineering of glucose-6-phosphate dehydrogenase on a nicotinamide-based biomimic and its application as a glucose biosensor[J]. ACS Catalysis, 2023, 13(3): 1983-1998. |
32 | Zhou J Y, Gu X Y, Zhu Y C, et al. Engineering glucose dehydrogenase to favor totally synthetic biomimetic cofactors containing carboxyl group[J]. Chembiochem, 2023, 24(15): e202300066. |
33 | Cahn J K B, Brinkmann-Chen S, Arnold F H. Enzyme nicotinamide cofactor specificity reversal guided by automated structural analysis and library design[J]. Methods in Molecular Biology, 2018, 1671: 15-26. |
34 | Vainstein S, Banta S. Engineering Candida boidinii formate dehydrogenase for activity with the non-canonical cofactor 3'-NADP(H)[J]. Protein Engineering, Design & Selection, 2023, 36: gzad009. |
35 | Sugiki S, Niide T, Toya Y, et al. Logistic regression-guided identification of cofactor specificity-contributing residues in enzyme with sequence datasets partitioned by catalytic properties[J]. ACS Synthetic Biology, 2022, 11(12): 3973-3985. |
36 | Nowak C, Pick A, Lommes P, et al. Enzymatic reduction of nicotinamide biomimetic cofactors using an engineered glucose dehydrogenase: providing a regeneration system for artificial cofactors[J]. ACS Catalysis, 2017, 7(8): 5202-5208. |
37 | Ji D B, Wang L, Hou S H, et al. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide[J]. Journal of the American Chemical Society, 2011, 133(51): 20857-20862. |
38 | Huang R, Chen H, Zhong C, et al. High-throughput screening of coenzyme preference change of thermophilic 6-phosphogluconate dehydrogenase from NADP+ to NAD+ [J]. Scientific Reports, 2016, 6: 32644. |
39 | Huang R, Chen H, Upp D M, et al. A high-throughput method for directed evolution of NAD(P)+-dependent dehydrogenases for the reduction of biomimetic nicotinamide analogues[J]. ACS Catalysis, 2019, 9(12): 11709-11719. |
40 | Zachos I, Genth R, Sutiono S, et al. Hot flows: evolving an archaeal glucose dehydrogenase for ultrastable carba-NADP+ using microfluidics at elevated temperatures[J]. ACS Catalysis, 2022, 12(3): 1841-1846. |
41 | Wenk S, Schann K, He H, et al. An “energy-auxotroph” Escherichia coli provides an in vivo platform for assessing NADH regeneration systems[J]. Biotechnology and Bioengineering, 2020, 117(11): 3422-3434. |
42 | Sellés Vidal L, Murray J W, Heap J T. Versatile selective evolutionary pressure using synthetic defect in universal metabolism[J]. Nature Communications, 2021, 12: 6859. |
43 | Zhang L Y, King E, Luo R, et al. Development of a high-throughput, in vivo selection platform for NADPH-dependent reactions based on redox balance principles[J]. ACS Synthetic Biology, 2018, 7(7): 1715-1721. |
44 | Maxel S, Zhang L Y, King E, et al. In vivo, high-throughput selection of thermostable cyclohexanone monooxygenase (CHMO) [J]. Catalysts, 2020, 10(8): 935. |
45 | Maxel S, Aspacio D, King E, et al. A growth-based, high-throughput selection platform enables remodeling of 4-hydroxybenzoate hydroxylase active site[J]. ACS Catalysis, 2020, 10(12): 6969-6974. |
46 | Liu Y X, Li Z F, Guo X J, et al. A phosphite-based screening platform for identification of enzymes favoring nonnatural cofactors[J]. Scientific Reports, 2022, 12: 12484. |
47 | Zhang L Y, King E, Black W B, et al. Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform[J]. Nature Communications, 2022, 13: 5021. |
48 | Nielsen J R, Weusthuis R A, Huang W E. Growth-coupled enzyme engineering through manipulation of redox cofactor regeneration[J]. Biotechnology Advances, 2023, 63: 108102. |
49 | Ji D B, Wang L, Zhou Y J, et al. Oxidative decarboxylation of L-malate by using a synthetic bioredox system[J]. Chinese Journal of Catalysis, 2013, 33(3): 530-535. |
50 | Liu Y X, Li Q, Wang L, et al. Engineering D-lactate dehydrogenase to favor a non-natural cofactor nicotinamide cytosine dinucleotide[J]. Chembiochem, 2020, 21(14): 1972-1975. |
51 | Li Q, Guo X J, Wang X Y, et al. Creation of cytochrome P450 catalysis depending on a non-natural cofactor for fatty acid hydroxylation[J]. Journal of Energy Chemistry, 2023, 79: 31-36. |
52 | Wang L, Ji D B, Liu Y X, et al. Synthetic cofactor-linked metabolic circuits for selective energy transfer[J]. ACS Catalysis, 2017, 7(3): 1977-1983. |
53 | Liu Y X, Feng Y B, Wang L, et al. Structural insights into phosphite dehydrogenase variants favoring a non-natural redox cofactor[J]. ACS Catalysis, 2019, 9(3): 1883-1887. |
54 | Liu Y X, Guo X J, Liu W J, et al. Structural insights into malic enzyme variants favoring an unnatural redox cofactor[J]. Chembiochem: a European Journal of Chemical Biology, 2021, 22(10): 1765-1768. |
55 | Guo X J, Liu Y X, Wang Q, et al. Non-natural cofactor and formate-driven reductive carboxylation of pyruvate[J]. Angewandte Chemie International Edition, 2020, 59(8): 3143-3146. |
56 | Wang J T, Guo X J, Wan L, et al. Engineering formaldehyde dehydrogenase from Pseudomonas putida to favor nicotinamide cytosine dinucleotide[J]. Chembiochem, 2022, 23(7): e202100697. |
57 | 王俊婷, 郭潇佳, 李青, 等. 创制非天然辅酶偏好型甲醇脱氢酶[J]. 合成生物学, 2021, 2(4): 651-661. |
Wang J T, Guo X J, Li Q, et al. Creation of non-natural cofactor-dependent methanol dehydrogenase[J]. Synthetic Biology Journal, 2021, 2(4): 651-661. | |
58 | Wang L, Liu B, Liu Y X, et al. Escherichia coli strain designed for characterizing in vivo functions of nicotinamide adenine dinucleotide analogues[J]. Organic Letters, 2019, 21(9): 3218-3222. |
59 | Wang X Y, Zhou Y J, Wang L, et al. Engineering Escherichia coli nicotinic acid mononucleotide adenylyltransferase for fully active amidated NAD biosynthesis[J]. Applied and Environmental Microbiology, 2017, 83(13): e00692-17. |
60 | Wang X Y, Feng Y, Guo X J, et al. Creating enzymes and self-sufficient cells for biosynthesis of the non-natural cofactor nicotinamide cytosine dinucleotide[J]. Nature Communications, 2021, 12: 2116. |
61 | Wan L, Wang X Y, Hu Y H, et al. Gram-scale biocatalytic preparation of the non-natural cofactor nicotinamide cytosine dinucleotide[J]. Tetrahedron Letters, 2022, 88: 153568. |
62 | 梁世玉, 万里, 郭潇佳, 等. 构建可合成非天然辅酶的圆红冬孢酵母工程菌[J]. 中国生物工程杂志, 2022, 42(5): 58-68. |
Liang S Y, Wan L, Guo X J, et al. Engineered Rhodosporidium toruloides strains capable of biosynthesizing a non-natural cofactor[J]. China Biotechnology, 2022, 42(5): 58-68. | |
63 | Black W B, Perea S, Li H. Design, construction, and application of noncanonical redox cofactor infrastructures[J]. Current Opinion in Biotechnology, 2023, 84: 103019. |
64 | Black W B, Zhang L Y, Mak W S, et al. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis[J]. Nature Chemical Biology, 2020, 16(1): 87-94. |
65 | Richardson K N, Black W B, Li H. Aldehyde production in crude lysate- and whole cell-based biotransformation using a noncanonical redox cofactor system[J]. ACS Catalysis, 2020, 10(15): 8898-8903. |
66 | King E, Cui Y T, Aspacio D, et al. Engineering Embden-Meyerhof-Parnas glycolysis to generate noncanonical reducing power[J]. ACS Catalysis, 2022, 12(14): 8582-8592. |
67 | King E, Maxel S, Zhang Y, et al. Orthogonal glycolytic pathway enables directed evolution of noncanonical cofactor oxidase[J]. Nature Communications, 2022, 13: 7282. |
68 | Aspacio D, Zhang Y L, Cui Y T, et al. Shifting redox reaction equilibria on demand using an orthogonal redox cofactor[J]. Nature Chemical Biology, 2024, 20(11): 1535-1546. |
69 | Chen Y L, Chou Y H, Hsieh C L, et al. Rational engineering of 3α-hydroxysteroid dehydrogenase/carbonyl reductase for a biomimetic nicotinamide mononucleotide cofactor[J]. Catalysts, 2022, 12(10): 1094. |
70 | Liu Y, Cong Y L, Zhang C X, et al. Engineering the biomimetic cofactors of NMNH for cytochrome P450 BM3 based on binding conformation refinement[J]. RSC Advances, 2021, 11(20): 12036-12042. |
71 | Luo S Q, Zhao J T, Zheng Y Y, et al. Biosynthesis of nicotinamide mononucleotide: current metabolic engineering strategies, challenges, and prospects[J]. Fermentation, 2023, 9(7): 594. |
72 | Huang Z S, Li N, Yu S Q, et al. Systematic engineering of Escherichia coli for efficient production of nicotinamide mononucleotide from nicotinamide[J]. ACS Synthetic Biology, 2022, 11(9): 2979-2988. |
73 | Iyanagi T. Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: the role of redox cofactors[J]. Biochimica et Biophysica Acta-Bioenergetics, 2019, 1860(3): 233-258. |
74 | Wei Y F, Ang E L, Zhao H M. Recent developments in the application of P450 based biocatalysts[J]. Current Opinion in Chemical Biology, 2018, 43(1): 1-7. |
75 | Pfeifer B A, Admiraal S J, Gramajo H, et al. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli [J]. Science, 2001, 291(5509): 1790-1792. |
76 | Marella E R, Holkenbrink C, Siewers V, et al. Engineering microbial fatty acid metabolism for biofuels and biochemicals[J]. Current Opinion in Biotechnology, 2018, 50: 39-46. |
77 | Reardon S. How synthetic biologists are building better biofactories[J]. Nature, 2024, 628(8006): 224-226. |
78 | Lee J W, Chan C T Y, Slomovic S, et al. Next-generation biocontainment systems for engineered organisms[J]. Nature Chemical Biology, 2018, 14(6): 530-537. |
79 | Kim J S. Genome editing comes of age[J]. Nature Protocols, 2016, 11(9): 1573-1578. |
80 | Yang J, Li F Z, Arnold F H. Opportunities and challenges for machine learning-assisted enzyme engineering[J]. ACS Central Science, 2024, 10(2): 226-241. |
81 | King E, Maxel S, Li H. Engineering natural and noncanonical nicotinamide cofactor-dependent enzymes: design principles and technology development[J]. Current Opinion in Biotechnology, 2020, 66: 217-226. |
[1] | Shiping SONG, Xiaoling TANG, Renchao ZHENG. Molecular modification of glutathione bifunctional synthase and its application [J]. CIESC Journal, 2024, 75(S1): 251-258. |
[2] | Mengting ZHANG, Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU. Artificial Cu-TM1459 metalloenzyme catalyzes asymmetric Michael addition reaction [J]. CIESC Journal, 2024, 75(9): 3255-3265. |
[3] | Xuemei NA, Yu WANG, Yaozhu JIANG, Nan JIA, Ying WANG, Chun LI. Expression optimization of heterologous CYP450 enzyme promotes the synthesis of ursolic acid in engineering Saccharomyces cerevisiae [J]. CIESC Journal, 2024, 75(7): 2624-2632. |
[4] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
[5] | Tao SUN, Meili SUN, Ran LU, Yizi YU, Kaifeng WANG, Xiaojun JI. Synthetic biology of yeasts drives green biomanufacturing of succinic acid [J]. CIESC Journal, 2024, 75(4): 1382-1393. |
[6] | Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes [J]. CIESC Journal, 2024, 75(3): 1052-1064. |
[7] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[8] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[9] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[10] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[11] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[12] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[13] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[14] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[15] | Zhuotao TAN, Siyu QI, Mengjiao XU, Jie DAI, Chenjie ZHU, Hanjie YING. Application of the redox cascade systems with coenzyme self-cycling in biocatalytic processes: opportunities and challenges [J]. CIESC Journal, 2023, 74(1): 45-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||