CIESC Journal ›› 2024, Vol. 75 ›› Issue (9): 3255-3265.DOI: 10.11949/0438-1157.20240302
• Biochemical engineering and technology • Previous Articles Next Articles
Mengting ZHANG(
), Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU(
)
Received:2024-03-15
Revised:2024-05-23
Online:2024-10-10
Published:2024-09-25
Contact:
Gang XU
通讯作者:
徐刚
作者简介:张梦婷(1999—),女,硕士研究生,22128078@zju.edu.cn
基金资助:CLC Number:
Mengting ZHANG, Shulin WANG, Xi SANG, Xinghao YUAN, Gang XU. Artificial Cu-TM1459 metalloenzyme catalyzes asymmetric Michael addition reaction[J]. CIESC Journal, 2024, 75(9): 3255-3265.
张梦婷, 王书林, 桑熙, 元兴昊, 徐刚. 人工Cu-TM1459金属酶催化不对称迈克尔加成反应[J]. 化工学报, 2024, 75(9): 3255-3265.
Add to citation manager EndNote|Ris|BibTeX
| 试剂 | 体积/µl |
|---|---|
| PrimerStar® MAX DNA聚合酶 | 25 |
| DNA模板 | 0.5 |
| 正向引物 | 1 |
| 反向引物 | 1 |
| dd H2O | 22.5 |
Table 1 Components of PCR system
| 试剂 | 体积/µl |
|---|---|
| PrimerStar® MAX DNA聚合酶 | 25 |
| DNA模板 | 0.5 |
| 正向引物 | 1 |
| 反向引物 | 1 |
| dd H2O | 22.5 |
| 步骤 | 温度/℃ | 时间 | 循环次数 |
|---|---|---|---|
| 预变性 | 98 | 2.5 min | 1 |
| 循环阶段 | 98 | 15 s | 30 |
| 55~65 | 15 s | ||
| 72 | 1.5 min | ||
| 后延伸 | 72 | 5 min | 1 |
| 保存 | 12 | ∞ | — |
Table 2 PCR steps
| 步骤 | 温度/℃ | 时间 | 循环次数 |
|---|---|---|---|
| 预变性 | 98 | 2.5 min | 1 |
| 循环阶段 | 98 | 15 s | 30 |
| 55~65 | 15 s | ||
| 72 | 1.5 min | ||
| 后延伸 | 72 | 5 min | 1 |
| 保存 | 12 | ∞ | — |
| 序号 | TM1459突变体 | 产率/% | e.e./% |
|---|---|---|---|
| 1 | — | 12 | — |
| 2 | Cu2+ | 28 | — |
| 3 | apo-H52A/H58E | 13 | -14 |
| 4 | H52A | 31 | 8 |
| 5 | H52A/H58E | 45 | 58 |
| 6 | H52A/H54E | 40 | -5 |
| 7 | H52A/H92E | 55 | -12 |
| 8 | H58A/H52E | 49 | -13 |
| 9 | H58A/H54E | 51 | -30 |
| 10 | H58A/H92E | 43 | -4 |
Table 3 Screening of fac-[Cu(His2)(OCOR)] trinuclear mutant library
| 序号 | TM1459突变体 | 产率/% | e.e./% |
|---|---|---|---|
| 1 | — | 12 | — |
| 2 | Cu2+ | 28 | — |
| 3 | apo-H52A/H58E | 13 | -14 |
| 4 | H52A | 31 | 8 |
| 5 | H52A/H58E | 45 | 58 |
| 6 | H52A/H54E | 40 | -5 |
| 7 | H52A/H92E | 55 | -12 |
| 8 | H58A/H52E | 49 | -13 |
| 9 | H58A/H54E | 51 | -30 |
| 10 | H58A/H92E | 43 | -4 |
| 进攻方向 | 突变体 | 产率/% | e.e./% |
|---|---|---|---|
| Re面 | W56A | 80 | 44 |
| I108A | 96 | 93 | |
| Si面 | K24A | 75 | 31 |
| R39A | 88 | 61 | |
| I49A | 88 | -8 | |
| F94A | 67 | 19 | |
| Re面或Si面 | C106A | 80 | 62 |
Table 4 Alanine scanning of key amino acids
| 进攻方向 | 突变体 | 产率/% | e.e./% |
|---|---|---|---|
| Re面 | W56A | 80 | 44 |
| I108A | 96 | 93 | |
| Si面 | K24A | 75 | 31 |
| R39A | 88 | 61 | |
| I49A | 88 | -8 | |
| F94A | 67 | 19 | |
| Re面或Si面 | C106A | 80 | 62 |
| 突变数/个 | 突变体 | 产率/% | e.e./% |
|---|---|---|---|
| 2 | I108A/C106V | 79 | 92 |
| 3 | I108A/C106V/W56Y | 26 | 1 |
| I108A/C106V/K24E | >99 | 93 | |
| 4 | I108A/C106V/K24E/W56Y | 57 | 92 |
Table 5 Optimizing catalytic performance of artificial Cu-TM1459 through combinatorial mutations
| 突变数/个 | 突变体 | 产率/% | e.e./% |
|---|---|---|---|
| 2 | I108A/C106V | 79 | 92 |
| 3 | I108A/C106V/W56Y | 26 | 1 |
| I108A/C106V/K24E | >99 | 93 | |
| 4 | I108A/C106V/K24E/W56Y | 57 | 92 |
| 1 | Rossiter B E, Swingle N M. Asymmetric conjugate addition[J]. Chemical Reviews, 1992, 92(5): 771-806. |
| 2 | Christoffers J, Koripelly G, Rosiak A, et al. Recent advances in metal-catalyzed asymmetric conjugate additions[J]. Synthesis, 2007, 2007(9): 1279-1300. |
| 3 | Rosati F, Roelfes G. Artificial metalloenzymes[J]. ChemCatChem, 2010, 2(8): 916-927. |
| 4 | Gennari C, Piarulli U. Combinatorial libraries of chiral ligands for enantioselective catalysis[J]. Chemical Reviews, 2003, 103(8): 3071-3100. |
| 5 | Schwizer F, Okamoto Y, Heinisch T, et al. Artificial metalloenzymes: reaction scope and optimization strategies[J]. Chemical Reviews, 2018, 118(1): 142-231. |
| 6 | Davis H J, Ward T R. Artificial metalloenzymes: challenges and opportunities[J]. ACS Central Science, 2019, 5(7): 1120-1136. |
| 7 | Steinreiber J, Ward T R. Artificial metalloenzymes as selective catalysts in aqueous media[J]. Coordination Chemistry Reviews, 2008, 252(5/6/7): 751-766. |
| 8 | Letondor C, Humbert N, Ward T R. Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(13): 4683-4687. |
| 9 | Letondor C, Pordea A, Humbert N, et al. Artificial transfer hydrogenases based on the biotin-(strept)avidin technology: fine tuning the selectivity by saturation mutagenesis of the host protein[J]. Journal of the American Chemical Society, 2006, 128(25): 8320-8328. |
| 10 | Ward T R. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond[J]. Accounts of Chemical Research, 2011, 44(1): 47-57. |
| 11 | Pordea A, Creus M, Letondor C, et al. Improving the enantioselectivity of artificial transfer hydrogenases based on the biotin-streptavidin technology by combinations of point mutations[J]. Inorganica Chimica Acta, 2010, 363(3): 601-604. |
| 12 | Roelfes G. DNA and RNA induced enantioselectivity in chemical synthesis[J]. Molecular BioSystems, 2007, 3(2): 126-135. |
| 13 | Coquière D, Bos J, Beld J, et al. Enantioselective artificial metalloenzymes based on a bovine pancreatic polypeptide scaffold [J]. Angewandte Chemie International Edition, 2009, 48(28): 5159-5162. |
| 14 | Coquière D, Feringa B L, Roelfes G. DNA-based catalytic enantioselective michael reactions in water[J]. Angewandte Chemie International Edition, 2007, 46(48): 9308-9311. |
| 15 | Bos J, García-Herraiz A, Roelfes G. An enantioselective artificial metallo-hydratase[J]. Chemical Science, 2013, 4(9): 3578-3582. |
| 16 | Sreenilayam G, Moore E J, Steck V, et al. Stereoselective olefin cyclopropanation under aerobic conditions with an artificial enzyme incorporating an iron-chlorin e6 cofactor[J]. ACS Catalysis, 2017, 7(11): 7629-7633. |
| 17 | Wang W J, Tachibana R, Zou Z, et al. Manganese transfer hydrogenases based on the biotin-streptavidin technology[J]. Angewandte Chemie International Edition, 2023, 62(43): e202311896. |
| 18 | Aplander K, Ding R, Krasavin M, et al. Asymmetric lewis acid catalysis in water: α-amino acids as effective ligands in aqueous biphasic catalytic Michael additions[J]. European Journal of Organic Chemistry, 2009, 2009(6): 810-821. |
| 19 | Dey S, Jäschke A. Tuning the stereoselectivity of a DNA-catalyzed Michael addition through covalent modification[J]. Angewandte Chemie International Edition, 2015, 54(38): 11279-11282. |
| 20 | Dong X C, Yuan Z J, Qu Y, et al. An ATP-Cu(Ⅱ) catalyst efficiently catalyzes enantioselective Michael reactions in water[J]. Green Chemistry, 2021, 23(24): 9876-9880. |
| 21 | Okrasa K, Kazlauskas R J. Manganese-substituted carbonic anhydrase as a new peroxidase[J]. Chemistry, 2006, 12(6): 1587-1596. |
| 22 | Fernández-Gacio A, Codina A, Fastrez J, et al. Transforming carbonic anhydrase into epoxide synthase by metal exchange[J]. Chembiochem, 2006, 7(7): 1013-1016. |
| 23 | Jing Q, Okrasa K, Kazlauskas R J. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase: a new reductase[J]. Chemistry, 2009, 15(6): 1370-1376. |
| 24 | Markel U, Sauer D F, Schiffels J, et al. Towards the evolution of artificial metalloenzymes—a protein engineer’s perspective[J]. Angewandte Chemie International Edition, 2019, 58(14): 4454-4464. |
| 25 | Lewis J C. Beyond the second coordination sphere: engineering dirhodium artificial metalloenzymes to enable protein control of transition metal catalysis[J]. Accounts of Chemical Research, 2019, 52(3): 576-584. |
| 26 | Lesley S A, Kuhn P, Godzik A, et al. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11664-11669. |
| 27 | Silvennoinen L, Sandalova T, Schneider G. The polyketide cyclase RemF from Streptomyces resistomycificus contains an unusual octahedral zinc binding site[J]. FEBS Letters, 2009, 583(17): 2917-2921. |
| 28 | Roelfes G. LmrR: a privileged scaffold for artificial metalloenzymes[J]. Accounts of Chemical Research, 2019, 52(3): 545-556. |
| 29 | Matsumoto R, Yoshioka S, Yuasa M, et al. An artificial metallolyase with pliable 2-His-1-carboxylate facial triad for stereoselective Michael addition[J]. Chemical Science, 2023, 14(14): 3932-3937. |
| 30 | Fujieda N, Ichihashi H, Yuasa M, et al. Cupin variants as a macromolecular ligand library for stereoselective Michael addition of nitroalkanes[J]. Angewandte Chemie (International Ed. in English), 2020, 59(20): 7717-7720. |
| 31 | Fujieda N, Nakano T, Taniguchi Y, et al. A well-defined osmium-cupin complex: hyperstable artificial osmium peroxygenase[J]. Journal of the American Chemical Society, 2017, 139(14): 5149-5155. |
| 32 | Jaroszewski L, Schwarzenbacher R, von Delft F, et al. Crystal structure of a novel manganese-containing cupin (TM1459) from Thermotoga maritima at 1.65 Å resolution[J]. Proteins, 2004, 56(3): 611-614. |
| 33 | Woo E J, Dunwell J M, Goodenough P W, et al. Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities[J]. Nature Structural Biology, 2000, 7(11): 1036-1040. |
| 34 | Amrein B, Schmid M, Collet G, et al. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals[J]. Metallomics: Integrated Biometal Science, 2012, 4(4): 379-388. |
| 35 | Bruijnincx P C A, van Koten G, Klein Gebbink R J M. Mononuclear non-heme iron enzymes with the 2-His-1-carboxylate facial triad: recent developments in enzymology and modeling studies[J]. Chemical Society Reviews, 2008, 37(12): 2716-2744. |
| 36 | Koehntop K D, Emerson J P, Que L. The 2-His-1-carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(Ⅱ) enzymes[J]. Journal of Biological Inorganic Chemistry, 2005, 10(2): 87-93. |
| 37 | Parkin G. Synthetic analogues relevant to the structure and function of zinc enzymes[J]. Chemical Reviews, 2004, 104(2): 699-767. |
| 38 | Podtetenieff J, Taglieber A, Bill E, et al. An artificial metalloenzyme: creation of a designed copper binding site in a thermostable protein[J]. Angewandte Chemie International Edition, 2010, 49(30): 5151-5155. |
| 39 | Fink M, Trunk S, Hall M, et al. Engineering of TM1459 from Thermotoga maritima for increased oxidative alkene cleavage activity[J]. Frontiers in Microbiology, 2016, 7: 1511. |
| 40 | Grill B, Pavkov-Keller T, Grininger C, et al. Engineering TM1459 for stabilisation against inactivation by amino acid oxidation[J]. Chemie Ingenieur Technik, 2023, 95(4): 596-606. |
| 41 | Otto S, Bertoncin F, Engberts J. Lewis acid catalysis of a Diels-Alder reaction in water[J]. Journal of the American Chemical Society, 1996, 118: 7702-7707. |
| 42 | Grimm A R, Sauer D F, Davari M D, et al. Cavity size engineering of a β-barrel protein generates efficient biohybrid catalysts for olefin metathesis[J]. ACS Catalysis, 2018, 8(4): 3358-3364. |
| 43 | Reetz M T, Rentzsch M, Pletsch A, et al. A robust protein host for anchoring chelating ligands and organocatalysts[J]. Chembiochem, 2008, 9(4): 552-564. |
| [1] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
| [2] | Shuzhen WANG, Yuting WANG, Mengxi MA, Wei ZHANG, Jiangnan XIANG, Haiying LU, Yan WANG, Binbin FAN, Jiajun ZHENG, Weijiong DAI, Ruifeng LI. Synthesis of ZSM-22 molecular sieve by two-step crystallization and its hydroisomerization performance [J]. CIESC Journal, 2024, 75(9): 3176-3187. |
| [3] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
| [4] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
| [5] | Xusheng LIU, Zeyang LI, Yusen YANG, Min WEI. Research progress on electrocatalytic carbon dioxide reduction to gaseous products [J]. CIESC Journal, 2024, 75(7): 2385-2408. |
| [6] | Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam [J]. CIESC Journal, 2024, 75(7): 2633-2643. |
| [7] | Yin WANG, Pengfei CHU, Hu LIU, Jing LYU, Shouying HUANG, Shengping WANG, Xinbin MA. Influence of aluminum sol with different pH on performance of shaped mordenite catalyst for dimethyl ether carbonylation [J]. CIESC Journal, 2024, 75(7): 2533-2543. |
| [8] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
| [9] | Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether [J]. CIESC Journal, 2024, 75(7): 2522-2532. |
| [10] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
| [11] | Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts [J]. CIESC Journal, 2024, 75(5): 1735-1749. |
| [12] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
| [13] | Jinhong MO, Xue HAN, Yixiang ZHU, Jing LI, Xuyu WANG, Hongbing JI. Investigation of Pt-Ga/CeO2-ZrO2-Al2O3 bifunctional catalyst for the catalytic conversion of n-butane into olefins [J]. CIESC Journal, 2024, 75(5): 1855-1869. |
| [14] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
| [15] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||