CIESC Journal ›› 2024, Vol. 75 ›› Issue (8): 2787-2799.DOI: 10.11949/0438-1157.20240233
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Aiming DENG1,2,3(), Yurong HE1,2,3(
), Tianqi TANG1,2,3, Yanwei HU1,2,3
Received:
2024-02-29
Revised:
2024-04-17
Online:
2024-08-21
Published:
2024-08-25
Contact:
Yurong HE
邓爱明1,2,3(), 何玉荣1,2,3(
), 唐天琪1,2,3, 胡彦伟1,2,3
通讯作者:
何玉荣
作者简介:
邓爱明(1997—),男,博士研究生,18742599308@163.com
基金资助:
CLC Number:
Aiming DENG, Yurong HE, Tianqi TANG, Yanwei HU. Simulation of effect of draft plate on particle growth process in spray fluidized beds[J]. CIESC Journal, 2024, 75(8): 2787-2799.
邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799.
模拟参数 | 物理量 | 数值 |
---|---|---|
喷动床 | x、y、z方向尺寸/m | 0.145×0.02×1 |
x、y、z方向网格数 | 29×3×100 | |
导流板高度HB/m | 0.06/0.07/0.08/0.09 | |
导流板长度LB/m | 0.06/0.07/0.08/0.09 | |
导流板间距WB/m | 0.022/0.026/0.030/0.034 | |
颗粒 | 颗粒直径dp/m | 0.003 |
颗粒密度ρp/(kg/m3) | 2505 | |
颗粒数Np | 12000 | |
法向弹性恢复系数en | 0.97 | |
切向弹性恢复系数et | 0.33 | |
摩擦系数(颗粒-颗粒)μp-p | 0.10 | |
摩擦系数(颗粒-壁面)μp-w | 0.30 | |
液滴 | 液滴直径dd/m | 0.0004 |
液滴密度ρd/(kg/m3) | 997 | |
液体黏度μd/(Pa·s) | 0.01 | |
喷入液滴数目Nd/s-1 | 240000 | |
气体 | 喷口气速usp/(m/s) | 43.5 |
背景气速ubg/(m/s) | 2.4 | |
气体剪切黏度μg/(Pa·s) | 1.8×10-5 |
Table 1 Parameters used in simulation
模拟参数 | 物理量 | 数值 |
---|---|---|
喷动床 | x、y、z方向尺寸/m | 0.145×0.02×1 |
x、y、z方向网格数 | 29×3×100 | |
导流板高度HB/m | 0.06/0.07/0.08/0.09 | |
导流板长度LB/m | 0.06/0.07/0.08/0.09 | |
导流板间距WB/m | 0.022/0.026/0.030/0.034 | |
颗粒 | 颗粒直径dp/m | 0.003 |
颗粒密度ρp/(kg/m3) | 2505 | |
颗粒数Np | 12000 | |
法向弹性恢复系数en | 0.97 | |
切向弹性恢复系数et | 0.33 | |
摩擦系数(颗粒-颗粒)μp-p | 0.10 | |
摩擦系数(颗粒-壁面)μp-w | 0.30 | |
液滴 | 液滴直径dd/m | 0.0004 |
液滴密度ρd/(kg/m3) | 997 | |
液体黏度μd/(Pa·s) | 0.01 | |
喷入液滴数目Nd/s-1 | 240000 | |
气体 | 喷口气速usp/(m/s) | 43.5 |
背景气速ubg/(m/s) | 2.4 | |
气体剪切黏度μg/(Pa·s) | 1.8×10-5 |
长度/m | 间距/m | 高度/m | 涂层颗粒 比例 | 颗粒直径 标准差/10-4 m |
---|---|---|---|---|
0.06 | 0.024 | 0.06 | 0.868 | 1.68 |
0.07 | 0.024 | 0.06 | 0.879 | 1.62 |
0.08 | 0.024 | 0.06 | 0.889 | 1.56 |
0.09 | 0.024 | 0.06 | 0.890 | 1.49 |
0.06 | 0.022 | 0.08 | 0.892 | 1.54 |
0.06 | 0.026 | 0.08 | 0.881 | 1.57 |
0.06 | 0.030 | 0.08 | 0.869 | 1.59 |
0.06 | 0.034 | 0.08 | 0.840 | 1.64 |
0.08 | 0.024 | 0.07 | 0.869 | 1.67 |
0.08 | 0.024 | 0.08 | 0.844 | 1.73 |
0.08 | 0.024 | 0.09 | 0.830 | 1.79 |
Table 2 Particle growth distribution under different guide plate structures
长度/m | 间距/m | 高度/m | 涂层颗粒 比例 | 颗粒直径 标准差/10-4 m |
---|---|---|---|---|
0.06 | 0.024 | 0.06 | 0.868 | 1.68 |
0.07 | 0.024 | 0.06 | 0.879 | 1.62 |
0.08 | 0.024 | 0.06 | 0.889 | 1.56 |
0.09 | 0.024 | 0.06 | 0.890 | 1.49 |
0.06 | 0.022 | 0.08 | 0.892 | 1.54 |
0.06 | 0.026 | 0.08 | 0.881 | 1.57 |
0.06 | 0.030 | 0.08 | 0.869 | 1.59 |
0.06 | 0.034 | 0.08 | 0.840 | 1.64 |
0.08 | 0.024 | 0.07 | 0.869 | 1.67 |
0.08 | 0.024 | 0.08 | 0.844 | 1.73 |
0.08 | 0.024 | 0.09 | 0.830 | 1.79 |
1 | Wu C Y, Kleinebudde P, Reynolds G. Particulate product manufacturing — an in-silico approach[J]. Powder Technology, 2018, 337: 1-2. |
2 | Wang B, Sun X R, Xiang J, et al. A critical review on granulation of pharmaceuticals and excipients: principle, analysis and typical applications[J]. Powder Technology, 2022, 401: 117329. |
3 | Singh A K, Tsotsas E. Influence of polydispersity and breakage on stochastic simulations of spray fluidized bed agglomeration[J]. Chemical Engineering Science, 2022, 247: 117022. |
4 | Fries L, Antonyuk S, Heinrich S, et al. DEM–CFD modeling of a fluidized bed spray granulator[J]. Chemical Engineering Science, 2011, 66(11): 2340-2355. |
5 | Turton R. The application of modeling techniques to film-coating processes[J]. Drug Development and Industrial Pharmacy, 2010, 36(2): 143-151. |
6 | 蔡葵. 喷雾流化床中含液滴作用的气固流动和造粒过程研究[D]. 南京: 东南大学, 2017. |
Cai K. Gas-solid flow with droplets and granulation in a spray fluidized bed[D]. Nanjing: Southeast University, 2017. | |
7 | Milacic E, Nunez Manzano M, Madanikashani S, et al. Liquid injection in a fluidised bed: temperature uniformity[J]. Chemical Engineering Science, 2022, 256: 117622. |
8 | Pan S Y, Ma J L, Liu D Y, et al. Theoretical and experimental insight into the homogeneous expansion of wet particles in a fluidized bed[J]. Powder Technology, 2022, 397: 117016. |
9 | Singh M, Shirazian S, Ranade V, et al. Challenges and opportunities in modelling wet granulation in pharmaceutical industry — a critical review[J]. Powder Technology, 2022, 403: 117380. |
10 | 李恒. 基于CFD-DEM模型的喷雾流化床颗粒流动、传热及包衣均匀性的模拟研究[D]. 南京: 东南大学, 2022. |
Li H. Simulation study of particle flow, heat transfer and coating uniformity in spray fluidized bed based on CFD-DEM model[D]. Nanjing: Southeast University, 2022. | |
11 | 周航. 制药流化床颗粒制备过程数值模拟及实验研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2017. |
Zhou H. Investigation of gas-solids flow in a pharmaceutical fluidized bed drying process by CFD simulation and ECT measurement[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2017. | |
12 | Grohn P, Oesau T, Heinrich S, et al. Investigation of the influence of wetting on the particle dynamics in a fluidized bed rotor granulator by MPT measurements and CFD-DEM simulations[J]. Powder Technology, 2022, 408: 117736. |
13 | Ge R H, Ye J M, Wang H G, et al. Measurement of particle concentration in a Wurster fluidized bed by electrical capacitance tomography sensors[J]. AIChE Journal, 2014, 60(12): 4051-4064. |
14 | 周云龙, 卢志叶, 王猛. 基于递归分析的喷雾气固流化床团聚状态识别[J]. 化工学报, 2018, 69(9): 3835-3842. |
Zhou Y L, Lu Z Y, Wang M. Recursive analysis and agglomerate state recognition of spray gas-solid fluidized bed[J]. CIESC Journal, 2018, 69(9): 3835-3842. | |
15 | 任振华, 金辉, 刘石, 等. 煤炭超临界水流化床制氢反应器内颗粒流动及传热特性的数值分析[J]. 工程热物理学报, 2020, 41(1): 154-160. |
Ren Z H, Jin H, Liu S, et al. Numerical analysis of particle flow and heat transfer characteristics in a coal-supercritical water fluidized bed reactor for hydrogen production[J]. Journal of Engineering Thermophysics, 2020, 41(1): 154-160. | |
16 | 李铁男, 赵碧丹, 赵鹏, 等. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661. |
Li T N, Zhao B D, Zhao P, et al. CFD-DEM simulation of the force acting on immersed baffles during the start-up stage of a gas-solid fluidized bed[J]. CIESC Journal, 2022, 73(6): 2649-2661. | |
17 | 王洪远, 纪律, 孟繁旭, 等. 基于动态双重网格下喷动床滞止区流动特性CFD-DEM数值模拟[J]. 化工学报, 2021, 72(11): 5563-5572. |
Wang H Y, Ji L, Meng F X, et al. CFD-DEM numerical simulation of flow characteristics in stagnation zone of spouted bed based on dynamic dual grid[J]. CIESC Journal, 2021, 72(11): 5563-5572. | |
18 | Link J M, Godlieb W, Deen N G, et al. Discrete element study of granulation in a spout-fluidized bed[J]. Chemical Engineering Science, 2007, 62(1/2): 195-207. |
19 | van Buijtenen M S, Deen N G, Heinrich S, et al. A discrete element study of wet particle-particle interaction during granulation in a spout fluidized bed[J]. The Canadian Journal of Chemical Engineering, 2009, 87(2): 308-317. |
20 | Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: a review of major applications and findings[J]. Chemical Engineering Science, 2008, 63(23): 5728-5770. |
21 | Zhu L H, Zhao Z Y, Liu C, et al. CFD-DEM simulations of a fluidized bed with droplet injection: effects on flow patterns and particle behavior[J]. Advanced Powder Technology, 2023, 34(1): 103897. |
22 | Li L, Rasmuson A, Ingram A, et al. PEPT study of particle cycle and residence time distributions in a Wurster fluid bed[J]. AIChE Journal, 2015, 61(3): 756-768. |
23 | Akgün I S, Erkey C. Investigation of hydrodynamic behavior of alginate aerogel particles in a laboratory scale Wurster fluidized bed[J]. Molecules, 2019, 24(16): 2915. |
24 | 谢恒来, 吴曼, 赵军, 等. 导向管喷动流化床中废弃印刷线路板的非金属颗粒包覆改性[J]. 化工学报, 2015, 66(3): 1185-1193. |
Xie H L, Wu M, Zhao J, et al. Coating modification of non-metal particles of waste printed circuit boards in spout-fluid bed with draft tube[J]. CIESC Journal, 2015, 66(3): 1185-1193. | |
25 | Yang S L, Sun Y H, Zhang L Q, et al. Numerical investigation on the effect of draft plates on spouting stability and gas–solid characteristics in a spout-fluid bed[J]. Chemical Engineering Science, 2016, 148: 108-125. |
26 | Kieckhefen P, Lichtenegger T, Pietsch S, et al. Simulation of spray coating in a spouted bed using recurrence CFD[J]. Particuology, 2019, 42: 92-103. |
27 | Anderson T B, Jackson R. Fluid mechanical description of fluidized beds. Equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539. |
28 | Muguruma Y, Tanaka T, Tsuji Y. Numerical simulation of particulate flow with liquid bridge between particles (simulation of centrifugal tumbling granulator)[J]. Powder Technology, 2000, 109(1/2/3): 49-57. |
29 | Tang T Q, He Y R, Ren A X, et al. Experimental study and DEM numerical simulation of dry/wet particle flow behaviors in a spouted bed[J]. Industrial & Engineering Chemistry Research, 2019, 58(33): 15353-15367. |
30 | Lian G P, Thornton C, Adams M J. Discrete particle simulation of agglomerate impact coalescence[J]. Chemical Engineering Science, 1998, 53(19): 3381-3391. |
31 | Goldman A J, Cox R G, Brenner H. Slow viscous motion of a sphere parallel to a plane wall(Ⅰ): Motion through a quiescent fluid[J]. Chemical Engineering Science, 1967, 22(4): 637-651. |
32 | Beetstra R, van der Hoef M A, Kuipers J A M. Numerical study of segregation using a new drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations[J]. Chemical Engineering Science, 2007, 62(1/2): 246-255. |
33 | Koch D L, Hill R J. Inertial effects in suspension and porous-media flows[J]. Annual Review of Fluid Mechanics, 2001, 33: 619-647. |
34 | van Buijtenen M S, van Dijk W J, Deen N G, et al. Numerical and experimental study on multiple-spout fluidized beds[J]. Chemical Engineering Science, 2011, 66(11): 2368-2376. |
35 | Deng A M, Tang T Q, Sun S S, et al. Particle coating growth behaviors in a spray fluidized bed based on gas-liquid-solid quasi-three-phase DEM numerical simulation[J]. Chemical Engineering Journal, 2023, 476: 146480. |
36 | Sutkar V S, Deen N G, Patil A V, et al. CFD-DEM model for coupled heat and mass transfer in a spout fluidized bed with liquid injection[J]. Chemical Engineering Journal, 2016, 288: 185-197. |
[1] | Lou ZHU, Yangfan SONG, Meng WANG, Ruipeng SHI, Yanmin LI, Hongwei CHEN, Zhuo LIU, Xiang WEI. Power generation characteristics of central pulse gas-liquid-solid circulating fluidized bed microbial fuel cell [J]. CIESC Journal, 2024, 75(8): 2991-3001. |
[2] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
[3] | Xiaoyu QIAN, Xuan RUAN, Shuiqing LI. Structural reconstruction and levitation of dielectric particle layers in electric fields [J]. CIESC Journal, 2024, 75(8): 2756-2762. |
[4] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[5] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
[6] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[7] | Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry [J]. CIESC Journal, 2024, 75(7): 2455-2464. |
[8] | Zhimin HAN, Jiang LI, Zeqi CHEN, Wei LIU, Zhiming XU. Particulate fouling characteristics of different longitudinal vortex generators in pulsating flow channel [J]. CIESC Journal, 2024, 75(7): 2486-2496. |
[9] | Fei LU, Bona LU, Guangwen XU. Analysis of criteria for ideal flow patterns in gas-solid micro fluidized bed reaction analyzer [J]. CIESC Journal, 2024, 75(6): 2201-2213. |
[10] | Bin HUANG, Shengjie FENG, Cheng FU, Wei ZHANG. Numerical study on spreading characteristics of droplet impact on single fiber [J]. CIESC Journal, 2024, 75(6): 2233-2242. |
[11] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[12] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[13] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[14] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[15] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 357
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 142
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||