CIESC Journal ›› 2024, Vol. 75 ›› Issue (8): 2763-2776.DOI: 10.11949/0438-1157.20240273
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Ziliang ZHU1(), Shuang WANG2, Yu'ang JIANG2, Mei LIN2, Qiuwang WANG1(
)
Received:
2024-03-06
Revised:
2024-04-23
Online:
2024-08-21
Published:
2024-08-25
Contact:
Qiuwang WANG
朱子良1(), 王爽2, 姜宇昂2, 林梅2, 王秋旺1(
)
通讯作者:
王秋旺
作者简介:
朱子良(1996—),男,博士研究生,zhuziliang1996@163.com
基金资助:
CLC Number:
Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration[J]. CIESC Journal, 2024, 75(8): 2763-2776.
朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776.
工况 | Am / (kg/(m3·s)) | g/(m/s2) | 算法 |
---|---|---|---|
案例0 | 1010 | 9.81 | 焓-多孔 |
案例1 | 1010 | 9.81 | 欧拉-拉格朗日 |
案例2 | 108 | 9.81 | 欧拉-拉格朗日 |
案例3 | 105 | 9.81 | 欧拉-拉格朗日 |
案例4 | 1010 | 29.43 | 欧拉-拉格朗日 |
案例5 | 1010 | 3.72(火星) | 欧拉-拉格朗日 |
Table 1 Working conditions of numerical simulations
工况 | Am / (kg/(m3·s)) | g/(m/s2) | 算法 |
---|---|---|---|
案例0 | 1010 | 9.81 | 焓-多孔 |
案例1 | 1010 | 9.81 | 欧拉-拉格朗日 |
案例2 | 108 | 9.81 | 欧拉-拉格朗日 |
案例3 | 105 | 9.81 | 欧拉-拉格朗日 |
案例4 | 1010 | 29.43 | 欧拉-拉格朗日 |
案例5 | 1010 | 3.72(火星) | 欧拉-拉格朗日 |
Ts / K | Tl / K | Tw / K | Pr | Ste | Gr | Ra |
---|---|---|---|---|---|---|
307.65 | 309.15 | 313.15 | 53.30 | 9.55×10-2 | 7.41×104 | 3.95×106 |
Table 2 Dimensionless numbers of flow and heat transfer
Ts / K | Tl / K | Tw / K | Pr | Ste | Gr | Ra |
---|---|---|---|---|---|---|
307.65 | 309.15 | 313.15 | 53.30 | 9.55×10-2 | 7.41×104 | 3.95×106 |
1 | Li W, Chen W. Numerical analysis on the thermal performance of a novel PCM-encapsulated porous heat storage Trombe-wall system[J]. Solar Energy, 2019, 188: 706-719. |
2 | Li X Y, Zhu Z L, Xu Z R, et al. A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process[J]. Applied Energy, 2019, 254: 113507. |
3 | Archibold A R, Bhardwaj A, Rahman M M, et al. Comparison of numerical and experimental assessment of a latent heat energy storage module for a high-temperature phase-change material[J]. Journal of Energy Resources Technology, 2016, 138(5): 052007. |
4 | 沈永亮, 张朋威, 刘淑丽. 肋片和多孔介质强化梯级相变储热系统性能的对比研究[J]. 化工学报, 2022, 73(10): 4366-4376. |
Shen Y L, Zhang P W, Liu S L. Comparative study on the performance of cascaded latent heat storage system enhanced by fins and porous media[J]. CIESC Journal, 2022, 73(10): 4366-4376. | |
5 | 陈子禾, 赵呈志, 冒文莉, 等. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825. |
Chen Z H, Zhao C Z, Mao W L, et al. Preparation and thermal properties of phase change composites supported by oriented biomass porous carbon[J]. CIESC Journal, 2022, 73(4): 1817-1825. | |
6 | 尹驰, 张正国, 凌子夜, 等. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
Yin C, Zhang Z G, Ling Z Y, et al. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation[J]. CIESC Journal, 2023, 74(4): 1795-1804. | |
7 | 赵耀. 相变材料及梯级系统传热储热特性的理论与实验研究[D]. 上海: 上海交通大学, 2018: 79-106. |
Zhao Y. Theoretical and experimental study on the heat transfer and storage characteristics of phase change materials and cascaded systems[D]. Shanghai: Shanghai Jiao Tong University, 2018: 79-106. | |
8 | Fu W C, Yan X, Gurumukhi Y, et al. High power and energy density dynamic phase change materials using pressure-enhanced close contact melting[J]. Nature Energy, 2022, 7: 270-280. |
9 | Hu N, Li Z R, Xu Z W, et al. Rapid charging for latent heat thermal energy storage: a state-of-the-art review of close-contact melting[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111918. |
10 | Zhao J D, Zhai J, Lu Y H, et al. Theory and experiment of contact melting of phase change materials in a rectangular cavity at different tilt angles[J]. International Journal of Heat and Mass Transfer, 2018, 120: 241-249. |
11 | Ma J J, Chen W Z, Xiao H G. Study of contact melting of plate bundles by molten material in severe reactor accidents[J]. Nuclear Engineering and Technology, 2023, 55(11): 4266-4273. |
12 | Kozak Y. Close-contact melting of phase change materials with a non-Newtonian power-law fluid liquid phase—modeling and analysis[J]. Journal of Non-Newtonian Fluid Mechanics, 2023, 318: 105062. |
13 | Fan L W, Zhu Z Q, Zeng Y, et al. Unconstrained melting heat transfer in a spherical container revisited in the presence of nano-enhanced phase change materials (NePCM)[J]. International Journal of Heat and Mass Transfer, 2016, 95: 1057-1069. |
14 | Chen L, Wang L, Wang Y F, et al. Investigation of the characteristics and mechanisms of contact melting and float melting phenomena inside a sphere[J]. Applied Thermal Engineering, 2023, 227: 120327. |
15 | Boroojerdian A, Nemati H, Selahi E. Direct and non-contact measurement of liquid fraction in unconstrained encapsulated PCM melting[J]. Energy, 2023, 284: 129359. |
16 | Chen X D, Li C Z, Yang Z N, et al. Golf-ball-inspired phase change material capsule: experimental and numerical simulation analysis of flow characteristics and thermal performance[J]. Energy, 2024, 293: 130595. |
17 | Voller V R, Prakash C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. |
18 | Assis E, Katsman L, Ziskind G, et al. Numerical and experimental study of melting in a spherical shell[J]. International Journal of Heat and Mass Transfer, 2007, 50(9/10): 1790-1804. |
19 | Iten M, Liu S L, Shukla A. Experimental validation of an air-PCM storage unit comparing the effective heat capacity and enthalpy methods through CFD simulations[J]. Energy, 2018, 155: 495-503. |
20 | Kasibhatla R R, König‑Haagen A, Rösler F, et al. Numerical modelling of melting and settling of an encapsulated PCM using variable viscosity[J]. Heat and Mass Transfer, 2017, 53(5): 1735-1744. |
21 | Kozak Y, Ziskind G. Novel enthalpy method for modeling of PCM melting accompanied by sinking of the solid phase[J]. International Journal of Heat and Mass Transfer, 2017, 112: 568-586. |
22 | Shockner T, Ziskind G. Combined close-contact and convective melting in a vertical cylindrical enclosure[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121492. |
23 | Faden M, König-Haagen A, Höhlein S, et al. An implicit algorithm for melting and settling of phase change material inside macrocapsules[J]. International Journal of Heat and Mass Transfer, 2018, 117: 757-767. |
24 | Hummel D, Beer S, Hornung A. A conjugate heat transfer model for unconstrained melting of macroencapsulated phase change materials subjected to external convection[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119205. |
25 | Liao Z R, Chen P J, Tian Z Q, et al. A modified heat capacity method for unconstrained melting inside the spherical capsule for thermal energy storage[J]. Journal of Energy Storage, 2022, 55: 105479. |
26 | Gudibande N, Iyer K. Numerical simulation of contact melting using the cell-splitting modified enthalpy method[J]. Numerical Heat Transfer, Part B: Fundamentals, 2017, 71(1): 84-107. |
27 | Yan Z J, Yang T T, Li S S, et al. Unconstrained melting of phase change material in cylindrical containers inside hot water tanks: numerical investigation and effect of aspect ratios[J]. Journal of Energy Storage, 2022, 47: 103647. |
28 | Tian S, Tan B L, Lin Y C, et al. A Eulerian numerical model to predict the enhancement effect of the gravity-driven motion melting process for latent thermal energy storage[J]. Entropy, 2024, 26(2): 175. |
29 | Stam J. Stable fluids[C]//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques. Seattle, United States: ACM Press/Addison, 1999: 121-128. |
30 | Solenthaler B, Schläfli J, Pajarola R. A unified particle model for fluid-solid interactions: research articles[J]. Computer Animation and Virtual Worlds, 2007, 18(1): 69-82. |
31 | Zhu Z L, Jiang Y A, Wang S, et al. Research on flow/heat transfer and sinking motion coupling mechanism of solid-liquid phase change by Euler-Lagrange iteration algorithm[C]//Proceeding of International Heat Transfer Conference 17.Connecticut: Begellhouse, 2023: 1031. |
32 | Mallya N, Haussener S. Buoyancy-driven melting and solidification heat transfer analysis in encapsulated phase change materials[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120525. |
33 | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019: 249-261. |
Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019: 249-261. | |
34 | 阳祥, 陶文铨. 高瑞利数下封闭腔内自然对流的数值模拟[J]. 西安交通大学学报, 2014, 48(5): 27-31. |
Yang X, Tao W Q. Numerical simulations for natural convection with high Rayleigh number in a tall rectangular cavity[J]. Journal of Xi'an Jiaotong University, 2014, 48(5): 27-31. | |
35 | Ferziger J H, Perić M, Street R L. Computational Methods for Fluid Dynamics[M]. Cham: Springer International Publishing, 2020: 15-16. |
36 | Wang Y, Zhu Z L, Ke H B, et al. Study of ice spike formation mechanism in the water-based phase change energy storage[J]. Journal of Enhanced Heat Transfer, 2023, 30(1): 53-73. |
37 | 张明. 固液相变糊状区内固相颗粒运动的三维数值模拟[D]. 济南: 山东建筑大学, 2023: 6-12. |
Zhang M. Three-dimensional numerical simulation of solid particle movement in solid-liquid mushy region[D]. Jinan: Shandong Jianzhu University, 2023: 6-12. | |
38 | Zeneli M, Malgarinos I, Nikolopoulos A, et al. Numerical simulation of a silicon-based latent heat thermal energy storage system operating at ultra-high temperatures[J]. Applied Energy, 2019, 242: 837-853. |
[1] | Shaojun DOU, Liang HAO. Mesoscale simulation of coupled gas charge transfer process in PEMFC catalyst layer [J]. CIESC Journal, 2024, 75(8): 3002-3010. |
[2] | Xiaoyu QIAN, Xuan RUAN, Shuiqing LI. Structural reconstruction and levitation of dielectric particle layers in electric fields [J]. CIESC Journal, 2024, 75(8): 2756-2762. |
[3] | Aiming DENG, Yurong HE, Tianqi TANG, Yanwei HU. Simulation of effect of draft plate on particle growth process in spray fluidized beds [J]. CIESC Journal, 2024, 75(8): 2787-2799. |
[4] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[5] | Yufei MAO, Fei CAO, Yanqin SHANGGUAN. Computing method for convection heat transfer of supercritical pressure fluid in turbulent pipe flow [J]. CIESC Journal, 2024, 75(8): 2821-2830. |
[6] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[7] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[8] | Hu JIN, Fan YANG, Mengyao DAI. The motion process of a droplet on a circular cylinder based on the lattice Boltzmann method [J]. CIESC Journal, 2024, 75(8): 2897-2908. |
[9] | Xiaofeng HUANG, Zhaohui LIU, Fan YANG. Experimental investigation of high-density hydrocarbon fuel JP-10 on flow heat transfer and pyrolysis characteristics [J]. CIESC Journal, 2024, 75(8): 2917-2928. |
[10] | Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry [J]. CIESC Journal, 2024, 75(7): 2455-2464. |
[11] | Jinrui YANG, Hongfei ZHENG, Xinglong MA, Rihui JIN, Shen LIANG. Study on two-stage stacked humidification-dehumidification desalination device [J]. CIESC Journal, 2024, 75(7): 2446-2454. |
[12] | Qingjie YU, Honghai YANG, Yuhao LIU, Haizhou FANG, Weiqi HE, Jun WANG, Xincheng LU. Wavelet analysis and flow pattern identification in pulsating heat pipes based on temperature signals [J]. CIESC Journal, 2024, 75(7): 2497-2504. |
[13] | Hongrui LI, Chunxi HUANG, Xiaodong HONG, Zuwei LIAO, Jingdai WANG, Yongrong YANG. An adaptive variable-step homotopy-based algorithm for process simulation with cyclic streams [J]. CIESC Journal, 2024, 75(7): 2604-2612. |
[14] | Zhimin HAN, Jiang LI, Zeqi CHEN, Wei LIU, Zhiming XU. Particulate fouling characteristics of different longitudinal vortex generators in pulsating flow channel [J]. CIESC Journal, 2024, 75(7): 2486-2496. |
[15] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 303
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||