CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 744-754.DOI: 10.11949/0438-1157.20240608
• Separation engineering • Previous Articles
Jiayi YAO(), Donghui ZHANG(
), Zhongli TANG, Wenbin LI
Received:
2024-06-03
Revised:
2024-07-11
Online:
2025-03-10
Published:
2025-03-25
Contact:
Donghui ZHANG
通讯作者:
张东辉
作者简介:
姚佳逸(1999—),女,硕士研究生,jiayi_yao@tju.edu.cn
CLC Number:
Jiayi YAO, Donghui ZHANG, Zhongli TANG, Wenbin LI. Research on carbon capture by pressure swing adsorption based on two-stage dual reflux[J]. CIESC Journal, 2025, 76(2): 744-754.
姚佳逸, 张东辉, 唐忠利, 李文彬. 基于二级双回流的变压吸附捕碳工艺研究[J]. 化工学报, 2025, 76(2): 744-754.
工艺 | 时间/s | ||||||
---|---|---|---|---|---|---|---|
90 | 10 | 45 | 90 | 10 | 45 | ||
一级 | bed 1 | AD | ED | VU | PU | ER | PR |
bed 2 | PU | ER | PR | AD | ED | VU | |
二级 | bed 3 | AD | ED | VU | VU | ER | PR |
bed 4 | VU | ER | PR | AD | ED | VU |
Table 1 The schedule of the two-stage dual-reflux PSA process
工艺 | 时间/s | ||||||
---|---|---|---|---|---|---|---|
90 | 10 | 45 | 90 | 10 | 45 | ||
一级 | bed 1 | AD | ED | VU | PU | ER | PR |
bed 2 | PU | ER | PR | AD | ED | VU | |
二级 | bed 3 | AD | ED | VU | VU | ER | PR |
bed 4 | VU | ER | PR | AD | ED | VU |
参数 | N2 | CO2 |
---|---|---|
IP1/(kmol/(kg·kPa)) | 6.77×10-10 | 6.07×10-9 |
IP2/K | 2034.0 | 2435.0 |
IP3/kPa-1 | 2.01×10-7 | 1.32×10-6 |
IP4/K | 2034.0 | 2034.0 |
ΔH/(kJ/mol) | -17.08 | -23.14 |
Table 2 Fitting parameters of extended Langmuir 2 model for CO2/N2 adsorption on silica gel[25]
参数 | N2 | CO2 |
---|---|---|
IP1/(kmol/(kg·kPa)) | 6.77×10-10 | 6.07×10-9 |
IP2/K | 2034.0 | 2435.0 |
IP3/kPa-1 | 2.01×10-7 | 1.32×10-6 |
IP4/K | 2034.0 | 2034.0 |
ΔH/(kJ/mol) | -17.08 | -23.14 |
参数 | 数值 |
---|---|
Hb1/m | 1.00 |
Hb2/m | 0.52 |
Db1/m | 0.060 |
Db2/m | 0.025 |
Wt/m | 0.002 |
rp/m | 0.002 |
ρb/(kg/m3) | 785 |
kw/(W/(m·K)) | 17 |
ks/(W/(m·K)) | 0.3 |
kg/(W/(m·K)) | 0.242 |
cpw/(kJ/(kg·K)) | 0.502 |
cps/(kJ/(kg·K)) | 0.902 |
hamb/(W/(m2·K)) | 60 |
εb | 0.3125 |
εp | 0.1429 |
ρw/(kg/m3) | 7800 |
Tamb/K | 298.15 |
Table 3 Parameters for column and adsorbent
参数 | 数值 |
---|---|
Hb1/m | 1.00 |
Hb2/m | 0.52 |
Db1/m | 0.060 |
Db2/m | 0.025 |
Wt/m | 0.002 |
rp/m | 0.002 |
ρb/(kg/m3) | 785 |
kw/(W/(m·K)) | 17 |
ks/(W/(m·K)) | 0.3 |
kg/(W/(m·K)) | 0.242 |
cpw/(kJ/(kg·K)) | 0.502 |
cps/(kJ/(kg·K)) | 0.902 |
hamb/(W/(m2·K)) | 60 |
εb | 0.3125 |
εp | 0.1429 |
ρw/(kg/m3) | 7800 |
Tamb/K | 298.15 |
模型方程 | 数学表达 | ||
---|---|---|---|
质量平衡 | (1) (2) | ||
能量平衡 | 气相 | (3) | |
固相 | (4) | ||
塔壁 | (5) | ||
动量平衡 | (6) | ||
吸附平衡 | (7) | ||
吸附速率 | (8) | ||
纯度 | (9) | ||
回收率 | (10) | ||
生产能力 | (11) | ||
电耗 | (12) | ||
阀门 | (13) |
Table 4 Mathematical models of the two-stage dual-reflux PSA process
模型方程 | 数学表达 | ||
---|---|---|---|
质量平衡 | (1) (2) | ||
能量平衡 | 气相 | (3) | |
固相 | (4) | ||
塔壁 | (5) | ||
动量平衡 | (6) | ||
吸附平衡 | (7) | ||
吸附速率 | (8) | ||
纯度 | (9) | ||
回收率 | (10) | ||
生产能力 | (11) | ||
电耗 | (12) | ||
阀门 | (13) |
工艺 | CO2纯度/% | CO2回收率/% | N2纯度/% | N2回收率/% | 生产能力/( | 能耗/( |
---|---|---|---|---|---|---|
二级DR-PSA | 96.42 | 96.22 | 99.93 | 99.47 | 1.05 | 1.69 |
二床六步DR-PSA[ | 95.6 | 96.8 | >98 | >98 | 0.32 | 2.5 |
二床六步DR-PSA[ | 95.55 | 96.81 | — | — | 0.89 | 2.5 |
三床七步VPSA[ | 80.94 | 90.61 | — | — | 0.52 | 1.0 |
Table 5 Comparison of different PSA processes for carbon capture
工艺 | CO2纯度/% | CO2回收率/% | N2纯度/% | N2回收率/% | 生产能力/( | 能耗/( |
---|---|---|---|---|---|---|
二级DR-PSA | 96.42 | 96.22 | 99.93 | 99.47 | 1.05 | 1.69 |
二床六步DR-PSA[ | 95.6 | 96.8 | >98 | >98 | 0.32 | 2.5 |
二床六步DR-PSA[ | 95.55 | 96.81 | — | — | 0.89 | 2.5 |
三床七步VPSA[ | 80.94 | 90.61 | — | — | 0.52 | 1.0 |
1 | Liu X L, He Y X. Notice of retraction: a decomposition analysis on influencing factors of energy-related CO2 emissions in China[C]//2010 IEEE International Conference on Advanced Management Science(ICAMS 2010). IEEE, 2010: 354-359. |
2 | 刘冰, 孙伟娜, 安亚雄, 等. 带循环的二阶变压吸附碳捕集工艺模拟、实验及分析[J]. 化工学报, 2018, 69(11): 4788-4797. |
Liu B, Sun W N, An Y X, et al. Simulation, experimentation and analyzation of two stage pressure swing adsorption process for CO2 capture[J]. CIESC Journal, 2018, 69(11): 4788-4797. | |
3 | 杨R T.吸附法气体分离[M]. 王树森, 译. 北京: 化学工业出版社, 1991: 244. |
Yang R T. Gas Separation by Adsorption Processes[M]. Wang S S, trans. Beijing: Chemical Industry Press, 1991: 244. | |
4 | 汪亚燕, 田彩霞, 丁兆阳, 等. 基于双回流变压吸附工艺的空气分离模拟及分析[J]. 化工学报, 2019, 70(10): 4002-4011. |
Wang Y Y, Tian C X, Ding Z Y, et al. Simulation and analysis of dual-reflux pressure swing adsorption for air separation[J]. CIESC Journal, 2019, 70(10): 4002-4011. | |
5 | 沈圆辉. 真空变压吸附沼气升级及二氧化碳捕集过程研究[D]. 天津: 天津大学, 2020. |
Shen Y H. Study on upgrading of biogas and carbon dioxide capture process by vacuum pressure swing adsorption[D]. Tianjin: Tianjin University, 2020. | |
6 | 孔德齐, 张莹莹, 武文玲, 等. 六塔变压吸附制氧工艺的模拟与分析[J]. 化工学报, 2023, 74(12): 4934-4944. |
Kong D Q, Zhang Y Y, Wu W L, et al. Simulation and analysis of oxygen production process by six-bed pressure swing adsorption process[J]. CIESC Journal, 2023, 74(12): 4934-4944. | |
7 | Gutierrez-Ortega A, Melis A, Nomen R, et al. Parameter screening of a VPSA cycle with automated breakthrough control for carbon capture[J]. Fuel, 2023, 339: 127298. |
8 | Chen X, Wang J, Ren T S, et al. Novel exchanger type vacuum temperature swing adsorption for post-combustion CO2 capture: process design and plant demonstration[J]. Separation and Purification Technology, 2023, 308: 122837. |
9 | Yu X X, Liu B, Shen Y H, et al. Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas[J]. Chinese Journal of Chemical Engineering, 2022, 43: 378-391. |
10 | Wilkes M D, Brown S. Flexible CO2 capture for open-cycle gas turbines via vacuum-pressure swing adsorption: a model-based assessment[J]. Energy, 2022, 250: 123805. |
11 | Cheng C Y, Kuo C C, Yang M W, et al. CO2 capture from flue gas of a coal-fired power plant using three-bed PSA process[J]. Energies, 2021, 14(12): 3582. |
12 | Jaschik M, Tanczyk M, Jaschik J, et al. The performance of a hybrid VSA-membrane process for the capture of CO2 from flue gas[J]. International Journal of Greenhouse Gas Control, 2020, 97: 103037. |
13 | Alibolandi M, Sadrameli S M, Rezaee F, et al. Separation of CO2/N2 mixture by vacuum pressure swing adsorption (VPSA) using zeolite 13X type and carbon molecular sieve adsorbents[J]. Heat and Mass Transfer, 2020, 56(6): 1985-1994. |
14 | Cui Y K, Xing Y, Tian J L, et al. Insights into the adsorption performance and separation mechanisms for CO2 and CO on NaX and CaA zeolites by experiments and simulation[J]. Fuel, 2023, 337: 127179. |
15 | Kakiuchi T, Yajima T, Shigaki N, et al. Modeling and optimal design of multicomponent vacuum pressure swing adsorber for simultaneous separation of carbon dioxide and hydrogen from industrial waste gas[J]. Adsorption, 2023, 29(1): 9-27. |
16 | 汪亚燕. 双回流变压吸附空气分离工艺的设计模拟[D]. 天津: 天津大学, 2020. |
Wang Y Y. Design and simulation of double reflux pressure swing adsorption air separation process[D]. Tianjin: Tianjin University, 2020. | |
17 | 田彩霞. 制氧吸附剂的合成与双回流变压吸附空气分离模拟实验研究[D]. 天津: 天津大学, 2018. |
Tian C X. Study on synthesis of oxygen-making adsorbent and simulation experiment of air separation by double reflux pressure swing adsorption[D]. Tianjin: Tianjin University, 2018. | |
18 | 鲁东东. 制氧吸附剂的合成与双回流真空变压吸附空分模拟[D]. 天津: 天津大学, 2014. |
Lu D D. Synthesis of oxygen-making adsorbent and air separation simulation of double reflux vacuum pressure swing adsorption[D]. Tianjin: Tianjin University, 2014. | |
19 | May E F, Zhang Y, Saleman T L H, et al. Demonstration and optimisation of the four dual-reflux pressure swing adsorption configurations[J]. Separation and Purification Technology, 2017, 177: 161-175. |
20 | Tian C X, Fu Q, Ding Z Y, et al. Experiment and simulation study of a dual-reflux pressure swing adsorption process for separating N2/O2 [J]. Separation and Purification Technology, 2017, 189: 54-65. |
21 | Weh R, Xiao G K, Sadeghi Pouya E, et al. Helium recovery and purification by dual reflux pressure swing adsorption[J]. Separation and Purification Technology, 2022, 288: 120603. |
22 | Guo Y L, Gu X W, Hu G P, et al. Enrichment of low-grade methane by dual reflux vacuum swing adsorption[J]. Separation and Purification Technology, 2022, 301: 121907. |
23 | Lei Q H, Tang T, Xiong Y F, et al. Experimental verification of hydrogen isotope enrichment process by dual-column pressure swing and temperature swing adsorption[J]. Fusion Engineering and Design, 2021, 172: 112726. |
24 | Wakasugi R, Kodama A, Goto M, et al. Dual reflux PSA process applied to VOC recovery as liquid condensate[J]. Adsorption, 2005, 11(1): 561-566. |
25 | 李冬冬. 双回流真空变压吸附分离CO2/N2实验和模拟研究[D]. 天津: 天津大学, 2017. |
Li D D. Experimental and simulation study on separation of CO2/N2 by double reflux vacuum pressure swing adsorption[D]. Tianjin: Tianjin University, 2017. | |
26 | Khurana M, Farooq S. Simulation and optimization of a 6-step dual-reflux VSA cycle for post-combustion CO2 capture[J]. Chemical Engineering Science, 2016, 152: 507-515. |
27 | Wawrzyńczak D, Majchrzak-Kucęba I, Srokosz K, et al. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas[J]. Separation and Purification Technology, 2019, 209: 560-570. |
28 | Reynolds S P, Mehrotra A, Ebner A D, et al. Heavy reflux PSA cycles for CO2 recovery from flue gas(partⅠ): Performance evaluation[J]. Adsorption, 2008, 14(2): 399-413. |
29 | Shen Y H, Zhou Y, Li D D, et al. Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas[J]. International Journal of Greenhouse Gas Control, 2017, 65: 55-64. |
30 | Wang Z G, Shen Y H, Zhang D H, et al. A comparative study of multi-objective optimization with ANN-based VPSA model for CO2 capture from dry flue gas[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 108031. |
[1] | Chuanchao HE, Jinghong ZHOU, Yueqiang CAO, Yao SHI, Xinggui ZHOU. Bed-particle dual scale coupled simulation on Ag/SiO2 catalyzed hydrogenation of oxalate to methyl glycolate [J]. CIESC Journal, 2025, 76(2): 654-666. |
[2] | Jingyu JIA, Deqi KONG, Yuanhui SHEN, Donghui ZHANG, Wenbin LI, Zhongli TANG. Simulation and analysis of ammonia separation process by pressure swing adsorption from synthetic ammonia reactor-off gas [J]. CIESC Journal, 2025, 76(2): 718-730. |
[3] | Ke ZHANG, Weijie REN, Mengna WANG, Kaifeng FAN, Liping CHANG, Jiabin LI, Tao MA, Jinping TIAN. Liquid-liquid mixing characteristics of Bunsen reaction products in microchannels [J]. CIESC Journal, 2025, 76(2): 623-636. |
[4] | Jinning YANG, Weifan WANG, Dong XU, Yi LIU, Xiaohan WENG, Ye YUAN, Zhi WANG. Progress in the scale-up research of membrane technologies for industrial flue gas carbon capture [J]. CIESC Journal, 2025, 76(2): 504-518. |
[5] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Current status and prospects of research on fluidization characteristics of high-density particles [J]. CIESC Journal, 2025, 76(2): 466-483. |
[6] | Qiwo HAN, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Analysis of influence of operating temperature on water distribution, proton transport and performance of PEMFC [J]. CIESC Journal, 2025, 76(1): 374-384. |
[7] | Zhicheng DENG, Huan YANG, Simin WANG, Jiarui WANG. Microtube structure impacts on hydrogen-air mixing effect and combustion performance in micromix combustor [J]. CIESC Journal, 2025, 76(1): 335-347. |
[8] | Hanbin WANG, Shuai HU, Fenglei BI, Junsen LI, Laibin HE. Desorption performance analysis of a metal hydride reactor with novel corrugated fins based on finite element method [J]. CIESC Journal, 2025, 76(1): 221-230. |
[9] | Xianming GAO, Wenxuan YANG, Shaohui LU, Xiaosong REN, Fangcai LU. Influence of droplet merging and jumping by dual-groove structures on superhydrophobic surfaces [J]. CIESC Journal, 2025, 76(1): 208-220. |
[10] | Ping LIU, Yusheng QIU, Shijing LI, Ruiqi SUN, Chen SHEN. Heat transfer and flow characteristics of nanofluids in microchannels [J]. CIESC Journal, 2025, 76(1): 184-197. |
[11] | Zhimin HAN, Xiangyu ZHOU, Hongyu ZHANG, Zhiming XU. Local deposition characteristics of CaCO3 fouling under different roughness element structures [J]. CIESC Journal, 2025, 76(1): 151-160. |
[12] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
[13] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
[14] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
[15] | Zhangzhou WANG, Tianqi TANG, Jiajun XIA, Yurong HE. Battery thermal management performance simulation based on composite phase change material [J]. CIESC Journal, 2024, 75(S1): 329-338. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 57
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 142
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||