CIESC Journal ›› 2024, Vol. 75 ›› Issue (11): 4020-4036.DOI: 10.11949/0438-1157.20240740
• Reviews and monographs • Previous Articles Next Articles
Chengzhi HU(), Guoxian WANG, Weijian TANG, Afei LI, Zhangxian CHEN, Zeheng YANG, Weixin ZHANG(
)
Received:
2024-07-01
Revised:
2024-09-11
Online:
2024-12-26
Published:
2024-11-25
Contact:
Weixin ZHANG
胡成志(), 王国贤, 唐伟建, 李阿飞, 陈章贤, 杨则恒, 张卫新(
)
通讯作者:
张卫新
作者简介:
胡成志(1999—),男,博士研究生,hcz199903@163.com
基金资助:
CLC Number:
Chengzhi HU, Guoxian WANG, Weijian TANG, Afei LI, Zhangxian CHEN, Zeheng YANG, Weixin ZHANG. Research progress on surface coating modification of nickel-rich cathode materials for high energy density lithium-ion battery[J]. CIESC Journal, 2024, 75(11): 4020-4036.
胡成志, 王国贤, 唐伟建, 李阿飞, 陈章贤, 杨则恒, 张卫新. 高比能锂离子电池高镍正极材料的表面包覆改性研究进展[J]. 化工学报, 2024, 75(11): 4020-4036.
1 | Liu Z L, Yu A S, Lee J Y. Synthesis and characterization of LiNi1- x- y Co x Mn y O2 as the cathode materials of secondary lithium batteries[J]. Journal of Power Sources, 1999, 81: 416-419. |
2 | Peng L L, Zhu Y, Khakoo U, et al. Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability[J]. Nano Energy, 2015, 17: 36-42. |
3 | Feng T, Li L P, Shi Q, et al. Evidence for the influence of polaron delocalization on the electrical transport in LiNi0.4+ x Mn0.4- x Co0.2O2 [J]. Physical Chemistry Chemical Physics, 2020, 22(4): 2054-2060. |
4 | Mo Y, Guo L J, Cao B K, et al. Correlating structural changes of the improved cyclability upon Nd-substitution in LiNi0.5Co0.2Mn0.3O2 cathode materials[J]. Energy Storage Materials, 2019, 18: 260-268. |
5 | 夏青, 赵俊豪, 王凯, 等. 基于分级共沉淀法制备锂离子电池LiNi0.5Co0.2Mn0.3O2正极材料[J]. 化工学报, 2017, 68(3): 1239-1246. |
Xia Q, Zhao J H, Wang K, et al. Synthesis and characterization of LiNi0.5Co0.2Mn0.3O2 cathode materials by stepwise co-precipitation[J]. CIESC Journal, 2017, 68(3): 1239-1246. | |
6 | Hu Q, Wu Y Z, Ren D S, et al. Revisiting the initial irreversible capacity loss of LiNi0.6Co0.2Mn0.2O2 cathode material batteries[J]. Energy Storage Materials, 2022, 50: 373-379. |
7 | Shi C G, Peng X X, Dai P, et al. Investigation and suppression of oxygen release by LiNi0.8Co0.1Mn0.1O2 cathode under overcharge conditions[J]. Advanced Energy Materials, 2022, 12(20): 2200569. |
8 | 熊凡, 张卫新, 杨则恒, 等. 高比能量锂离子电池正极材料的研究进展[J]. 储能科学与技术, 2018, 7(4): 607-617. |
Xiong F, Zhang W X, Yang Z H, et al. Research progress on cathode materials for high energy density lithium ion batteries[J]. Energy Storage Science and Technology, 2018, 7(4): 607-617. | |
9 | Weigel T, Schipper F, Erickson E M, et al. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations[J]. ACS Energy Letters, 2019, 4(2): 508-516. |
10 | Shi K, Lai C, Liu X J, et al. LiNi0.8Co0.15Al0.05O2 as both a trapper and accelerator of polysulfides for lithium-sulfur batteries[J]. Energy Storage Materials, 2019, 17: 111-117. |
11 | Gao T P, Wong K W, Ng K M. High-quality LiNi0.8Co0.15Al0.05O2 cathode with excellent structural stability: suppressed structural degradation and pore defects generation[J]. Nano Energy, 2020, 73: 104798. |
12 | Tan Z L, Chen X X, Li Y J, et al. Enabling superior cycling stability of LiNi0.9Co0.05Mn0.05O2 with controllable internal strain[J]. Advanced Functional Materials, 2023, 33(26): 2215123. |
13 | Liu N, Chen L, Wang H Y, et al. Phase behavior tuning enable high-safety and crack-free Ni-rich layered cathode for lithium-ion battery[J]. Chemical Engineering Journal, 2023, 472: 145113. |
14 | Wu F, Liu N, Chen L, et al. Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability[J]. Nano Energy, 2019, 59: 50-57. |
15 | Lee S, Li C, Manthiram A. Effects of calcination conditions on the structural and electrochemical behaviors of high-nickel, cobalt-free LiNi0.9Mn0.1O2 cathode[J]. Advanced Energy Materials, 2024, 14(24): 2400662. |
16 | Hu C Z, Ma J T, Li A F, et al. Structural reinforcement through high-valence Nb doping to boost the cycling stability of co-free and Ni-rich LiNi0.9Mn0.1O2 cathode materials[J]. Energy & Fuels, 2023, 37(11): 8005-8013. |
17 | Yang J, Liang X H, Ryu H H, et al. Ni-rich layered cathodes for lithium-ion batteries: from challenges to the future[J]. Energy Storage Materials, 2023, 63: 102969. |
18 | Zhang F Y, Guo Y N, Li C X, et al. Multiscale strain alleviation of Ni-rich cathode guided by in situ environmental transmission electron microscopy during the solid-state synthesis[J]. Journal of Energy Chemistry, 2023, 84: 467-475. |
19 | Zhao H C, Bai Y, Li Y, et al. Insight into thermal analysis kinetics of surface protected LiNi0.8Co0.15Al0.05O2 cathode for safe lithium-ion batteries[J]. Energy Storage Materials, 2022, 49: 409-420. |
20 | Ni L S, Chen H Y, Deng W T, et al. Atomical reconstruction and cationic reordering for nickel-rich layered cathodes[J]. Advanced Energy Materials, 2022, 12(11): 2103757. |
21 | Chu Y Q, Mu Y B, Zou L F, et al. Thermodynamically stable dual-modified LiF&FeF3 layer empowering Ni-rich cathodes with superior cyclabilities[J]. Advanced Materials, 2023, 35(21): 2212308. |
22 | Chu Y Q, Mu Y B, Zou L F, et al. Synergistic structure of LiFeO2 and Fe2O3 layers with electrostatic shielding effect to suppress surface lattice oxygen release of Ni-rich cathode[J]. Chemical Engineering Journal, 2023, 465: 142750. |
23 | Yu S A, Seo J K, Yun J M, et al. Hybrid surface coating layers comprising boron and phosphorous compounds on LiNi0.90Co0.05Mn0.05O2 cathode materials to ensure the reliability of lithium-ion batteries[J]. Materials Today Energy, 2023, 37: 101377. |
24 | Zhang R Z, Ma Y, Tang Y S, et al. Conformal Li2HfO3/HfO2 nanoparticle coatings on layered Ni-rich oxide cathodes for stabilizing interfaces in all-solid-state batteries[J]. Chemistry of Materials, 2023, 35(17): 6835-6844. |
25 | Yin C J, Zhou H M, Li J. Influence of doped anions on PEDOT/Ni-Mn-Co-O for supercapacitor electrode material[J]. Applied Surface Science, 2019, 464: 220-228. |
26 | Sattar T, Sim S J, Lee S H, et al. Unveiling the impact of Mg doping and in situ Li reactive coating on the Ni-rich cathode material for LIBs[J]. Solid State Ionics, 2022, 378: 115886. |
27 | Saleem A, Shaw L L, Iqbal R, et al. Ni-rich cathode evolution: exploring electrochemical dynamics and strategic modifications to combat degradation[J]. Energy Storage Materials, 2024, 69: 103440. |
28 | Sun L W, Zhang Z S, Hu X F, et al. Realization of Ti doping by electrostatic assembly to improve the stability of LiCoO2 cycled to 4.5V[J]. Journal of the Electrochemical Society, 2019, 166(10): A1793. |
29 | Manthiram A, Vadivel Murugan A, Sarkar A, et al. Nanostructured electrode materials for electrochemical energy storage and conversion[J]. Energy & Environmental Science, 2008, 1(6): 621-638. |
30 | Chen Z H, Dahn J R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V[J]. Electrochimica Acta, 2004, 49(7): 1079-1090. |
31 | 陈晓轩, 李晟, 胡泳钢, 等. 锂离子电池三元层状氧化物正极材料失效模式分析[J]. 储能科学与技术, 2019, 8(6): 1003-1016. |
Chen X X, Li S, Hu Y G, et al. Failure mechanism of Li1+ x (NCM)1- x O2 layered oxide cathode material during capacity degradation[J]. Energy Storage Science and Technology, 2019, 8(6): 1003-1016. | |
32 | Hoang K, Johannes M D. Defect chemistry in layered transition-metal oxides from screened hybrid density functional calculations[J]. Journal of Materials Chemistry A, 2014, 2(15): 5224-5235. |
33 | Zhang M J, Hu X B, Li M F, et al. Cooling induced surface reconstruction during synthesis of high-Ni layered oxides[J]. Advanced Energy Materials, 2019, 9(43): 1901915. |
34 | You Y, Celio H, Li J Y, et al. Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries[J]. Angewandte Chemie (International Ed. in English), 2018, 57(22): 6480-6485. |
35 | Hu N F, Zhang C, Song K F, et al. Enhanced high-temperature performance and thermal stability of lithium-rich cathode via combining full concentration gradient design with surface spinel modification[J]. Chemical Engineering Journal, 2021, 415: 129042. |
36 | Zhang F L, Li B Q, Li C Y, et al. In-situ conversion of residual alkali into fast-ion conductor coating and synchronously realizing gradient Mo4+ doping to stabilize LiNi0.9Mn0.1O2 cathode[J]. Journal of Alloys and Compounds, 2024, 991: 174457. |
37 | Ma S, Zhang X D, Wu S M, et al. Unraveling the nonlinear capacity fading mechanisms of Ni-rich layered oxide cathode[J]. Energy Storage Materials, 2023, 55: 556-565. |
38 | Han Y K, Zhang Y C, Lei Y K, et al. Regulating cathode-electrolyte interphase by confining functional aluminum compound within Ni-rich cathodes[J]. Advanced Functional Materials, 2023, 33(37): 2301642. |
39 | Zhang C, Li T, Wu X K, et al. Ni-rich cathode materials with enhanced kinetics and hydrophobicity endowed by reactive silane coating[J]. Chemical Engineering Journal, 2023, 473: 145309. |
40 | Song L B, Du J L, Xiao Z L, et al. Research progress on the surface of high-nickel nickel-cobalt-manganese ternary cathode materials: a mini review[J]. Frontiers in Chemistry, 2020, 8: 00761. |
41 | Ko D S, Park J H, Yu B Y, et al. Degradation of high-nickel-layered oxide cathodes from surface to bulk: a comprehensive structural, chemical, and electrical analysis[J]. Advanced Energy Materials, 2020, 10(36): 2001035. |
42 | Cui Z Z, Li X, Bai X Y, et al. A comprehensive review of foreign-ion doping and recent achievements for nickel-rich cathode materials[J]. Energy Storage Materials, 2023, 57: 14-43. |
43 | Park N Y, Park G T, Kim S B, et al. Degradation mechanism of Ni-rich cathode materials: focusing on particle interior[J]. ACS Energy Letters, 2022, 7(7): 2362-2369. |
44 | Li F K, Liu Z B, Liao C J, et al. Gradient boracic polyanion doping-derived surface lattice modulation of high-voltage Ni-rich layered cathodes for high-energy-density Li-ion batteries[J]. ACS Energy Letters, 2023, 8(11): 4903-4914. |
45 | Ou X, Liu T C, Zhong W T, et al. Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy[J]. Nature Communications, 2022, 13: 2319. |
46 | Ni L S, Chen H Y, Guo S, et al. Enabling structure/interface regulation for high performance Ni-rich cathodes[J]. Advanced Functional Materials, 2023, 33(51): 2307126. |
47 | Yang J C, Li Y J, Xi X M, et al. Suppressed internal intrinsic stress engineering in high-performance Ni-rich cathode via multilayered in situ coating structure[J]. Energy & Environmental Materials, 2024, 7(2): e12574. |
48 | Zheng J X, Ye Y K, Liu T C, et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control[J]. Accounts of Chemical Research, 2019, 52(8): 2201-2209. |
49 | Qiu L, Song Y, Zhang M K, et al. Structural reconstruction driven by oxygen vacancies in layered Ni-rich cathodes[J]. Advanced Energy Materials, 2022, 12(19): 2200022. |
50 | Yang C K, Shao R W, Wang Q, et al. Bulk and surface degradation in layered Ni-rich cathode for Li ions batteries: Defect proliferation via chain reaction mechanism[J]. Energy Storage Materials, 2021, 35: 62-69. |
51 | Streich D, Erk C, Guéguen A, et al. Operando monitoring of early Ni-mediated surface reconstruction in layered lithiated Ni-Co-Mn oxides[J]. The Journal of Physical Chemistry C, 2017, 121(25): 13481-13486. |
52 | Renfrew S E, McCloskey B D. Quantification of surface oxygen depletion and solid carbonate evolution on the first cycle of LiNi0.6Mn0.2Co0.2O2 electrodes[J]. ACS Applied Energy Materials, 2019, 2(5): 3762-3772. |
53 | Renfrew S E, Kaufman L A, McCloskey B D. Altering surface contaminants and defects influences the first-cycle outgassing and irreversible transformations of LiNi0.6Mn0.2Co0.2O2 [J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34913-34921. |
54 | Cui Z H, Manthiram A. Thermal stability and outgassing behaviors of high-nickel cathodes in lithium-ion batteries[J]. Angewandte Chemie, 2023, 135(43): e202307243. |
55 | Wang X Q, Ren D S, Liang H M, et al. Ni crossover catalysis: truth of hydrogen evolution in Ni-rich cathode-based lithium-ion batteries[J]. Energy & Environmental Science, 2023, 16(3): 1200-1209. |
56 | Su Y F, Zhang Q Y, Chen L, et al. Stress accumulation in Ni-rich layered oxide cathodes: origin, impact, and resolution[J]. Journal of Energy Chemistry, 2022, 65: 236-253. |
57 | Tanim T R, Yang Z Z, Finegan D P, et al. A comprehensive understanding of the aging effects of extreme fast charging on high Ni NMC cathode[J]. Advanced Energy Materials, 2022, 12(22): 2103712. |
58 | Kim J, Lee I, Kim Y H, et al. Ni-rich cathode material with isolated porous layer hindering crack propagation under 4.5 V high cut-off voltage cycling[J]. Chemical Engineering Journal, 2023, 455: 140578. |
59 | Kim U H, Kuo L Y, Kaghazchi P, et al. Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries[J]. ACS Energy Letters, 2019, 4(2): 576-582. |
60 | Li C, Liu C, Liu H L, et al. In situ epitaxial growth and electrochemical conversion of LiNi0.5Mn1.5O4 thin layer on Ni-rich cathode materials for high voltage lithium-ion batteries[J]. Nanoscale, 2023, 15(20): 9187-9195. |
61 | Zhang H L, May B M, Omenya F, et al. Layered oxide cathodes for Li-ion batteries: oxygen loss and vacancy evolution[J]. Chemistry of Materials, 2019, 31(18): 7790-7798. |
62 | Wang L G, Lei X C, Liu T C, et al. Regulation of surface defect chemistry toward stable Ni-rich cathodes[J]. Advanced Materials, 2022, 34(19): 2200744. |
63 | Sun G, Yu F D, Lu M, et al. Surface chemical heterogeneous distribution in over-lithiated Li1+ x CoO2 electrodes[J]. Nature Communications, 2022, 13, 6464. |
64 | Zhang Z, Ding X, Huang X B, et al. Selenium treatment towards enhanced cyclic stability for single-crystal Ni-rich cathode at ultra-high voltage of 4.7 V[J]. Chemical Engineering Journal, 2024, 482: 148905. |
65 | Wu S M, Zhang X D, Ma S, et al. A new insight into the capacity decay mechanism of Ni-rich layered oxide cathode for lithium-ion batteries[J]. Small, 2022, 18(47): 2204613. |
66 | Lee S, Su L S, Mesnier A, et al. Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries[J]. Joule, 2023, 7(11): 2430-2444. |
67 | Kaufman L A, Huang T Y, Lee D H, et al. Particle surface cracking is correlated with gas evolution in high-Ni Li-ion cathode materials[J]. ACS Applied Materials & Interfaces, 2022, 14(35): 39959-39964. |
68 | Xiong F, Chen Z X, Huang C, et al. Near-equilibrium control of Li2TiO3 nanoscale layer coated on LiNi0.8Co0.1Mn0.1O2 cathode materials for enhanced electrochemical performance[J]. Inorganic Chemistry, 2019, 58(22): 15498-15506. |
69 | Tang W J, Chen Z X, Xiong F, et al. An effective etching-induced coating strategy to shield LiNi0.8Co0.1Mn0.1O2 electrode materials by LiAlO2 [J]. Journal of Power Sources, 2019, 412: 246-254. |
70 | Chen Z X, Zhang Q G, Tang W J, et al. Ultrahigh capacity retention of a Li2ZrO3-coated Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material through covalent interfacial engineering[J]. ACS Applied Energy Materials, 2021, 4(12): 13785-13795. |
71 | Li J Y, Hua H M, Kong X B, et al. In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials[J]. Energy Storage Materials, 2022, 46: 90-99. |
72 | Wang D, Zheng L L, Li X C, et al. Effect of high Ni on battery thermal safety[J]. International Journal of Energy Research, 2020, 44(14): 12158-12168. |
73 | Xiao Z L, Liu P, Song L B, et al. The correlation between structure and thermal properties of nickel-rich ternary cathode materials: a review[J]. Ionics, 2021, 27(8): 3207-3217. |
74 | Wang L F, Wang R, Zhong C, et al. New insight on correlation between the electrochemical stability and the thermal stability of high nickel cathode materials[J]. Journal of Energy Chemistry, 2022, 72: 265-275. |
75 | Deng Z C, Liu Y, Wang L, et al. Challenges of thermal stability of high-energy layered oxide cathode materials for lithium-ion batteries: a review[J]. Materials Today, 2023, 69: 236-261. |
76 | Tang W J, Hu C Z, Li A F, et al. Constructing a stable interface on Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode via lactic acid-assisted engineering strategy[J]. Journal of Energy Chemistry, 2024, 90: 412-422. |
77 | Li A F, Hu C Z, Tang W J, et al. Mg/Ta dual-site doping of high-nickel layered cathode material LiNi0.9Co0.1O2 for extended cycling and thermal stability[J]. Chemical Engineering Journal, 2024, 487: 150644. |
[1] | Dan PENG, Junjie LU, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress of functional electrolyte for high-voltage LiCoO2 battery [J]. CIESC Journal, 2024, 75(9): 3028-3040. |
[2] | Bangjun GUO, Linan JIA, Xi ZHANG. A review of NCM cathode and interface characteristics in all-solid-state lithium-ion battery with sulfide electrolytes [J]. CIESC Journal, 2024, 75(3): 743-759. |
[3] | Wen WEN, Huiyan WANG, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth [J]. CIESC Journal, 2024, 75(1): 366-376. |
[4] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[5] | Zhilong WANG, Ye YANG, Zhenzhen ZHAO, Tao TIAN, Tong ZHAO, Yahui CUI. Influence of mixing time and sequence on the dispersion properties of the cathode slurry of lithium-ion battery [J]. CIESC Journal, 2023, 74(7): 3127-3138. |
[6] | Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689. |
[7] | Weijiang CHENG, Heqi WANG, Xiang GAO, Na LI, Sainan MA. Research progress on film-forming electrolyte additives for Si-based lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 571-584. |
[8] | Lei ZHONG, Xueqing QIU, Wenli ZHANG. Advances in lignin-derived carbon anodes for alkali metal ion batteries [J]. CIESC Journal, 2022, 73(8): 3369-3380. |
[9] | Huiyan WANG, Yiqin CHEN, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Numerical simulation of cathode coating of lithium-ion battery for porosity optimization [J]. CIESC Journal, 2022, 73(1): 376-383. |
[10] | LIANG Kunfeng, WANG Moran, GAO Meijie, LYU Zhenwei, XU Hongyu, DONG Bin, GAO Fengling. Thermodynamic analysis of performance of integrated thermal management system for pure electric vehicle [J]. CIESC Journal, 2021, 72(S1): 494-502. |
[11] | CHEN Yiqin, XU Yu, ZHOU Jinghong, SUI Zhijun, ZHOU Xinggui. Heterogeneous modeling and internal mass transfer mechanism of lithium-ion batteries: effect of particle size distribution [J]. CIESC Journal, 2021, 72(2): 1078-1088. |
[12] | CAO Jianing, GAO Xiang, LUO Yingwu, SU Rongxin. Study on preparation and performance of aqueous binder for lithium iron phosphate electrodes in lithium-ion battery [J]. CIESC Journal, 2021, 72(2): 1169-1180. |
[13] | Yu WANG, Yu ZHANG, Weiwen TONG, Guanghua YE, Xinggui ZHOU, Weikang YUAN. Engineering hierarchical pore network for Li-ion battery electrodes [J]. CIESC Journal, 2021, 72(12): 6340-6350. |
[14] | Yiwei WANG, Wenjiong CAO, Peng PENG, Yaodong ZHENG, Bo LEI, Youjie SHI, Fangming JIANG. Electro-thermal characteristics of retired LiFePO4 power battery module [J]. CIESC Journal, 2020, 71(S2): 259-266. |
[15] | Sheng TIAN, Jiajiang XIAO. Numerical simulation and analysis of lithium-ion battery heat pipe cooling module based on orthogonal analytic hierarchy process [J]. CIESC Journal, 2020, 71(8): 3510-3517. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 246
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||