CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1312-1322.DOI: 10.11949/0438-1157.20240841
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Junbing XIAO1(), Xiangyu ZHONG1, Jiandi REN1, Fangfang ZHONG1, Changhui LIU2(
), Chuankun JIA1
Received:
2024-07-24
Revised:
2024-09-20
Online:
2025-03-28
Published:
2025-03-25
Contact:
Junbing XIAO, Changhui LIU
肖俊兵1(), 钟湘宇1, 任建地1, 钟芳芳1, 刘昌会2(
), 贾传坤1
通讯作者:
肖俊兵,刘昌会
作者简介:
肖俊兵(1988—),男,博士,讲师,xjb1th@163.com
基金资助:
CLC Number:
Junbing XIAO, Xiangyu ZHONG, Jiandi REN, Fangfang ZHONG, Changhui LIU, Chuankun JIA. Research on the heat storage properties of stearic acid phase change materials enhanced by bio-carbon materials[J]. CIESC Journal, 2025, 76(3): 1312-1322.
肖俊兵, 钟湘宇, 任建地, 钟芳芳, 刘昌会, 贾传坤. 基于生物碳材料强化的硬脂酸相变材料储热性能研究[J]. 化工学报, 2025, 76(3): 1312-1322.
Sample | Tm/℃ | hm/(J·g-1) | Sample | Tm/℃ | hm/(J·g-1) | Sample | Tm/℃ | hm/(J·g-1) |
---|---|---|---|---|---|---|---|---|
SA | 68.35 | 230.20 | — | — | — | — | — | — |
SA/BN0.005 | 69.08 | 182.64 | SA/CLSF0.005 | 68.83 | 190.43 | SA/BN-CLSF0.005 | 70.08 | 203.16 |
SA/BN0.010 | 69.25 | 168.59 | SA/CLSF0.010 | 68.80 | 184.80 | SA/BN-CLSF0.010 | 68.86 | 183.78 |
SA/BN0.015 | 69.22 | 161.90 | SA/CLSF0.015 | 69.23 | 179.55 | SA/BN-CLSF0.015 | 69.02 | 175.51 |
SA/BN0.020 | 69.25 | 159.45 | SA/CLSF0.020 | 69.07 | 174.67 | SA/BN-CLSF0.020 | 68.85 | 167.80 |
SA/BN0.025 | 69.40 | 143.53 | SA/CLSF0.025 | 68.75 | 174.29 | SA/BN-CLSF0.025 | 69.46 | 153.04 |
Table 1 Latent heat of melting and temperature of stearic acid based composite phase change materials
Sample | Tm/℃ | hm/(J·g-1) | Sample | Tm/℃ | hm/(J·g-1) | Sample | Tm/℃ | hm/(J·g-1) |
---|---|---|---|---|---|---|---|---|
SA | 68.35 | 230.20 | — | — | — | — | — | — |
SA/BN0.005 | 69.08 | 182.64 | SA/CLSF0.005 | 68.83 | 190.43 | SA/BN-CLSF0.005 | 70.08 | 203.16 |
SA/BN0.010 | 69.25 | 168.59 | SA/CLSF0.010 | 68.80 | 184.80 | SA/BN-CLSF0.010 | 68.86 | 183.78 |
SA/BN0.015 | 69.22 | 161.90 | SA/CLSF0.015 | 69.23 | 179.55 | SA/BN-CLSF0.015 | 69.02 | 175.51 |
SA/BN0.020 | 69.25 | 159.45 | SA/CLSF0.020 | 69.07 | 174.67 | SA/BN-CLSF0.020 | 68.85 | 167.80 |
SA/BN0.025 | 69.40 | 143.53 | SA/CLSF0.025 | 68.75 | 174.29 | SA/BN-CLSF0.025 | 69.46 | 153.04 |
Sample | T1/℃ | T2/℃ |
---|---|---|
SA | 287.7 | 320.0 |
SA/BN0.005 | 291.1 | 325.8 |
SA/BN0.010 | 275.9 | 308.9 |
SA/BN0.015 | 272.7 | 300.2 |
SA/BN0.020 | 277.8 | 311.5 |
SA/BN0.025 | 287.9 | 323.8 |
SA/CLSF0.005 | 283.8 | 314.5 |
SA/CLSF0.010 | 282.1 | 310.4 |
SA/CLSF0.015 | 277.5 | 308.1 |
SA/CLSF0.020 | 273.7 | 301.8 |
SA/CLSF0.025 | 282.7 | 311.7 |
SA/BN-CLSF0.005 | 270.5 | 302.7 |
SA/BN-CLSF0.010 | 274.9 | 306.4 |
SA/BN-CLSF0.015 | 277.2 | 310.9 |
SA/BN-CLSF0.020 | 263.4 | 295.7 |
SA/BN-CLSF0.025 | 268.8 | 301.1 |
Table 2 Thermogravimetric analysis of SA-based composite phase change materials
Sample | T1/℃ | T2/℃ |
---|---|---|
SA | 287.7 | 320.0 |
SA/BN0.005 | 291.1 | 325.8 |
SA/BN0.010 | 275.9 | 308.9 |
SA/BN0.015 | 272.7 | 300.2 |
SA/BN0.020 | 277.8 | 311.5 |
SA/BN0.025 | 287.9 | 323.8 |
SA/CLSF0.005 | 283.8 | 314.5 |
SA/CLSF0.010 | 282.1 | 310.4 |
SA/CLSF0.015 | 277.5 | 308.1 |
SA/CLSF0.020 | 273.7 | 301.8 |
SA/CLSF0.025 | 282.7 | 311.7 |
SA/BN-CLSF0.005 | 270.5 | 302.7 |
SA/BN-CLSF0.010 | 274.9 | 306.4 |
SA/BN-CLSF0.015 | 277.2 | 310.9 |
SA/BN-CLSF0.020 | 263.4 | 295.7 |
SA/BN-CLSF0.025 | 268.8 | 301.1 |
1 | Zhang H Q, Sun Q R, Yuan Y P, et al. A novel form-stable phase change composite with excellent thermal and electrical conductivities[J]. Chemical Engineering Journal, 2018, 336: 342-351. |
2 | 杨生, 邵雪峰, 范利武. 面向中温储热的D-半乳糖醇/肌糖醇二元共晶相变材料热稳定性研究[J]. 化工学报, 2020, 71(2): 864-870. |
Yang S, Shao X F, Fan L W. Thermal endurance of binary eutectic phase change material D-dulcitol/inositol for medium temperature latent heat storage[J]. CIESC Journal, 2020, 71(2): 864-870. | |
3 | 吕培召, 徐一钧, 沈仕轩, 等. 多元低共熔材料热物性及电池热管理性能研究[J]. 工程热物理学报, 2021, 42(6): 1507-1515. |
Lü P Z, Xu Y J, Shen S X, et al. The investigation on thermal properties and battery thermal management performance of polynary eutectic mixtures[J]. Journal of Engineering Thermophysics, 2021, 42(6): 1507-1515. | |
4 | 邹瀚影, 冯妍卉, 邱琳, 等. 十八烷酸热传导机制的尺度效应研究[J]. 化工学报, 2019, 70(S2): 155-160, 377. |
Zou H Y, Feng Y H, Qiu L, et al. Size effect of heat conduction mechanism on stearic acid[J]. CIESC Journal, 2019, 70(S2): 155-160, 377. | |
5 | Zhang X L, Wang X, Zhong C H, et al. Ultrathin-wall mesoporous surface carbon foam stabilized stearic acid as a desirable phase change material for thermal energy storage[J]. Journal of Industrial and Engineering Chemistry, 2020, 85: 208-218. |
6 | 刘万强, 杨帆, 袁华, 等. 醇类有机物热传导的分子动力学模拟及微观机理研究[J]. 化工学报, 2020, 71(11): 5159-5168. |
Liu W Q, Yang F, Yuan H, et al. Molecular dynamics simulation and mechanism study on thermal conductivity of alcohols[J]. CIESC Journal, 2020, 71(11): 5159-5168. | |
7 | Wu R Q, Gao W, Zhou Y H, et al. A novel three-dimensional network-based stearic acid/graphitized carbon foam composite as high-performance shape-stabilized phase change material for thermal energy storage[J]. Composites Part B: Engineering, 2021, 225: 109318. |
8 | He X Q, Zhang L, Li C Z. PEG-based polyurethane/paraffin@SiO2/boron nitride phase change composite with efficient thermal conductive pathways and superior mechanical property[J]. Composites Communications, 2021, 25: 100609. |
9 | Fu L Y, Wu Z X, Wu K Y, et al. A thermally induced flexible composite phase change material with boron nitride nanosheets/carbon nanotubes modified skeleton for battery thermal management[J]. Applied Energy, 2024, 373: 123899. |
10 | Wu L M, Liu Q X, Wang X L, et al. Preparation of two-dimensional nano montmorillonite/stearic acid energy storage composites with excellent stability and heat storage property[J]. Applied Clay Science, 2020, 191: 105614. |
11 | Pugalenthi S, Chellapandian M, Dharmaraj J J J, et al. Enhancing the thermal transport property of eutectic lauric-stearic acid based phase change material with silicon carbide nanoparticles for usage in battery thermal management system[J]. Journal of Energy Storage, 2024, 84: 110890. |
12 | Cheng P, Tang Z D, Chen X, et al. Advanced phase change hydrogel integrating metal-organic framework for self-powered thermal management[J]. Nano Energy, 2023, 105: 108009. |
13 | 吴婷婷, 胡艳鑫, 容惠强, 等. 基于膨胀石墨复合相变材料的传热性能研究[J]. 中南大学学报(自然科学版), 2021, 52(1): 200-209. |
Wu T T, Hu Y X, Rong H Q, et al. Research on heat transfer performance of composite phase change materials based on expanded graphite[J]. Journal of Central South University(Science and Technology), 2021, 52(1): 200-209. | |
14 | Geng L, Wang J P, Yang X L, et al. Synergistic enhancement of phase change materials through three-dimensional porous layered covalent triazine framework/expanded graphite composites for solar energy storage and beyond[J]. Chemical Engineering Journal, 2024, 487: 150749. |
15 | Liang G Y, Zhang J W, An S H, et al. Phase change material filled hybrid 2D/3D graphene structure with ultra-high thermal effusivity for effective thermal management[J]. Carbon, 2021, 176: 11-20. |
16 | Wu S Y, Cao S, Xie H D, et al. Enhanced thermal performance of 3D hybrid graphene aerogel encapsulating paraffin for battery thermal management[J]. International Communications in Heat and Mass Transfer, 2024, 156: 107618. |
17 | Zhang M, Cheng H F, Wang C Y, et al. Kaolinite nanotube-stearic acid composite as a form-stable phase change material for thermal energy storage[J]. Applied Clay Science, 2021, 201: 105930. |
18 | Wen R L, Liu Y F, Yang C, et al. Enhanced thermal properties of stearic acid/carbonized maize straw composite phase change material for thermal energy storage in buildings[J]. Journal of Energy Storage, 2021, 36: 102420. |
19 | Sun M Y, Feng D L, Sun F Y, et al. Insights into effect of lignocellulosic biomass framework types on bio-based shape stable composite phase change materials[J]. Journal of Energy Storage, 2024, 91: 112103. |
20 | Jia X W, Li Q Y, Ao C H, et al. High thermal conductive shape-stabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105710. |
21 | Bin Shahid U, Abdala A. A critical review of phase change material composite performance through figure-of-merit analysis: graphene vs boron nitride[J]. Energy Storage Materials, 2021, 34: 365-387. |
22 | Xin S, Zhao Z W, Liu S X, et al. Study on the enhancement effect of synergy between multi-size functionalized boron nitride and graphene oxide on the thermal properties of phase change composites[J]. Molecules, 2023, 28(9): 3797. |
23 | Luo F B, He Y F, Cui W Q, et al. Shape-stabilized phase change materials with superior thermal conductivity for thermal energy harvesting[J]. ACS Applied Polymer Materials, 2022, 4(3): 2160-2168. |
24 | Jiang T Y, Zhang Y L, Olayiwola S, et al. Biomass-derived porous carbons support in phase change materials for building energy efficiency: a review[J]. Materials Today Energy, 2022, 23: 100905. |
25 | Hou Y J, Ma F, Fu Z, et al. Encapsulation of stearic-palmitic acid in alkali-activated coconut shell and corn cob biochar to optimize energy storage[J]. Journal of Energy Storage, 2023, 66: 107418. |
26 | Hekimoğlu G, Sarı A, Kar T, et al. Walnut shell derived bio-carbon/methyl palmitate as novel composite phase change material with enhanced thermal energy storage properties[J]. Journal of Energy Storage, 2021, 35: 102288. |
27 | An J Y, Yin M Q, Zhang Q, et al. Genome survey sequencing of Luffa cylindrica L. and microsatellite high resolution melting (SSR-HRM) analysis for genetic relationship of Luffa genotypes[J]. International Journal of Molecular Sciences, 2017, 18(9): 1942. |
28 | Su H X, Guo X, Chen G L, et al. A novel honeycomb-like porous carbon from loofah sponge for form-stable phase change materials with high encapsulation capacity and reliability[J]. Materials Letters, 2022, 308: 131118. |
29 | Song J Y, He H F, Wang Y B, et al. Shape-stabilized phase change composites supported by biomass loofah sponge-derived microtubular carbon scaffold toward thermal energy storage and electric-to-thermal conversion[J]. Journal of Energy Storage, 2022, 56: 105891. |
30 | Li L G, Song J Y, Wang Y B, et al. Fabrication and performance of shape-stable phase change composites supported by environment-friendly and economical loofah sponge fibers for thermal energy storage[J]. Energy & Fuels, 2022, 36(7): 3938-3946. |
31 | Xiao J, Zou B, Liu C H, et al. Carbonized loofah sponge fragments enhanced phase change thermal energy storage: preparation and thermophysical property analysis[J]. Applied Thermal Engineering, 2024, 242: 122505. |
32 | Li Y, Zheng N N, Ren Y, et al. Anisotropic and hierarchical porous boron nitride/graphene aerogels supported phase change materials for efficient solar-thermal energy conversion[J]. Ceramics International, 2024, 50(11): 18923-18931. |
33 | Dai Z F, Zhang G L, Xiao Y F, et al. High-directional thermally conductive stearic acid/expanded graphite—graphene films for efficient photothermal energy storage[J]. Chemical Engineering Journal, 2024, 484: 149203. |
34 | Ao C, Yan S Y, Zhao S T, et al. Stearic acid/expanded graphite composite phase change material with high thermal conductivity for thermal energy storage[J]. Energy Reports, 2022, 8: 4834-4843. |
35 | Li W, Dong Y, Zhang X, et al. Preparation and performance analysis of graphite additive/paraffin composite phase change materials[J]. Processes, 2019, 7(7): 447. |
36 | Wang C M, Chen K, Huang J, et al. Thermal behavior of polyethylene glycol based phase change materials for thermal energy storage with multiwall carbon nanotubes additives[J]. Energy, 2019, 180: 873-880. |
37 | Wang C M, Chen K, Huang Z, et al. Effect of polymer-derived silicon carbonitride on thermal performances of polyethylene glycol based composite phase change materials[J]. Solar Energy, 2020, 208: 282-288. |
38 | Liu Z P, He F F, Yang A S, et al. Double-skeleton based shape-stabilized phase change materials with excellent solar-thermal energy conversion and shape memory performance[J]. Thermochimica Acta, 2022, 717: 179360. |
39 | Liu S X, Zhang X, Zhu X Z, et al. A low-temperature phase change material based on capric-stearic acid/expanded graphite for thermal energy storage[J]. ACS Omega, 2021, 6(28): 17988-17998. |
40 | Bai K H, Li C C, Xie B S, et al. Emerging PEG/VO2 dual phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2022, 239: 111686. |
41 | Feng B, Zhang Y H, Tu J, et al. Determination on the thermal conductivity and thermal contact resistance of thin composite phase change films as a thermal interfacial material[J]. Case Studies in Thermal Engineering, 2022, 33: 101979. |
42 | Cheng C L, Shalabh, Garg G. Coefficient of determination for multiple measurement error models[J]. Journal of Multivariate Analysis, 2014, 126: 137-152. |
43 | Ali Bhutto Y, Pandey A K, Saidur R, et al. Analyzing the thermal potential of binary 2D (h-BN/Gr) nanoparticles enhanced lauric acid phase change material for photovoltaic thermal system application[J]. Journal of Energy Storage, 2023, 73: 109116. |
44 | Zhang Y A, Wang J S, Qiu J J, et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity[J]. Applied Energy, 2019, 237: 83-90. |
45 | Liu Y N, Wang N N, Ding Y F. Preparation and properties of composite phase change material based on solar heat storage system[J]. Journal of Energy Storage, 2021, 40: 102805. |
46 | Hu Z C, Jiang M H, Zou Y J, et al. MoS2-decorated carbonized melamine foam/reduced graphene oxide network for constructing polyethylene-glycol-based multifunctional phase change materials toward multiple energy harvesting and microwave absorbing applications[J]. Chemical Engineering Journal, 2023, 461: 141923. |
47 | Gao M M, Zhu L L, Peh C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production[J]. Energy & Environmental Science, 2019, 12(3): 841-864. |
[1] | Junbing XIAO, Bo ZOU, Jiandi REN, Changhui LIU, Chuankun JIA. Research on heat storage performance of chloride composite molten salt based on phase diagram analysis [J]. CIESC Journal, 2025, 76(3): 963-974. |
[2] | Yanbei LIU, Ruoming WANG, Juan LIU, Taimoor Raza, Yuzheng LU, Rizwan Raza, Bin ZHU, Songbo LI, Shengli AN, Sining YUN. Preparation of CeO2@La0.6Sr0.4Co0.2Fe0.8O3-δ electrolyte and its property in semiconductor ionic fuel cells performance [J]. CIESC Journal, 2025, 76(3): 1353-1362. |
[3] | Ke QI, Di WANG, Zhe XIE, Dongsheng CHEN, Yunlong ZHOU, Lingfang SUN. Research on transient characteristics of solid oxide fuel cells considering coupling features of multiphysics fields [J]. CIESC Journal, 2025, 76(3): 1264-1274. |
[4] | Yuanhua LI, Siqi LING, Kejun FENG, Ying FENG, Yuching KUO, Shihhuan HSIEH. Construction and catalytic application of immobilized lipase microreactors based on cMOFs for the synthesis of mandelic acid [J]. CIESC Journal, 2025, 76(3): 1170-1179. |
[5] | Wenbao LI, Jinpeng HU, Miao DU, Pengju PAN, Guorong SHAN. High strength and toughness P(SBMA-co-AAc)/SiO2 composite hydrogel marine antifouling and drag-reducing coating [J]. CIESC Journal, 2025, 76(2): 787-796. |
[6] | Su TANG, Zi'ao ZHENG, Hanze WEI, Xiaoling XU, Xiaoqiang ZHAI. Preparation and thermal conductivity reinforcement of PMMA/PEG600/CNT composite shaped phase change materials [J]. CIESC Journal, 2024, 75(S1): 309-320. |
[7] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
[8] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[9] | Lin ZHANG, Ziyi ZHANG, Yong LI, Shaoping TONG. Preparation of Fe-carbon/nitrogen composites from Fe-MOF-74 precusor and its performance in activating peroxymonosulfate [J]. CIESC Journal, 2024, 75(5): 1882-1889. |
[10] | Ruobing PI, Yunlong ZHOU. Research progress on photocatalytic reduction of carbon dioxide in direct Z-scheme heterojunctions system [J]. CIESC Journal, 2024, 75(10): 3379-3400. |
[11] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[12] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[13] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[14] | Ao ZHANG, Yingwu LUO. Low modulus, high elasticity and high peel adhesion acrylate pressure sensitive adhesives [J]. CIESC Journal, 2023, 74(7): 3079-3092. |
[15] | Bin CAI, Xiaolin ZHANG, Qian LUO, Jiangtao DANG, Liyuan ZUO, Xinmei LIU. Research progress of conductive thin film materials [J]. CIESC Journal, 2023, 74(6): 2308-2321. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 309
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||