CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1170-1179.DOI: 10.11949/0438-1157.20240698

• Biochemical engineering and technology • Previous Articles     Next Articles

Construction and catalytic application of immobilized lipase microreactors based on cMOFs for the synthesis of mandelic acid

Yuanhua LI1(), Siqi LING1, Kejun FENG1, Ying FENG1, Yuching KUO2, Shihhuan HSIEH1()   

  1. 1.School of Chemistry and Material Engineering, Huizhou University, Huizhou 516007, Guangdong, China
    2.Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan, China
  • Received:2024-06-23 Revised:2024-11-05 Online:2025-03-28 Published:2025-03-25
  • Contact: Shihhuan HSIEH

基于cMOFs的固定化脂肪酶微反应器的构筑及其扁桃酸催化应用

李远华1(), 凌思棋1, 封科军1, 冯颖1, 郭于菁2, 谢世桓1()   

  1. 1.惠州学院化学与材料工程学院,广东 惠州 516007
    2.台湾中原大学工学院,台湾 桃园 320314
  • 通讯作者: 谢世桓
  • 作者简介:李远华(1988—),女,博士,讲师,liyuanhua@hzu.edu.cn
  • 基金资助:
    广东省自然科学基金项目(2020A1515010074);惠州学院博士科研启动项目(2020JB030);广东省大学生创新训练项目(S202310577058)

Abstract:

Different series of carbonized metal-organic frameworks (cMOFs) were prepared through high-temperature carbonization and applied for the fabrication of microreactors with Burkholderia cepacia lipase (BCL). The effects of pore structure and pore microenvironment on the immobilization performance of BCL were studied, and the performance of these microreactors in catalytic resolution of mandelic acid enantiomers was explored. The results indicated that the cMIL-53(Al) material from cMOFs exhibited the best immobilization performance for BCL, maintaining a (R)-mandelic acid conversion rate of 50% and an enantiomeric excess (eep) value over 99% in nine consecutive catalytic cycles, with an enzyme selectivity (E) value greater than 200. The high-temperature carbonized cMIL-53(Al) showed increased inter-pore structure, allowing BCL to effectively enter the cMOF structure and increase the spatial activity sites of BCL. Additionally, its surface is rich in carboxyl functional groups, enabling BCL to adsorb and immobilize through hydrogen bonding, significantly enhancing the catalytic efficiency. Compared to traditional organic base catalysis methods, the enzyme-immobilized microreactors proposed in this study have the advantages of reusability, short catalytic time, ease of product purification and separation, and lower environmental pollution. This provides a new strategy for the construction of novel enzyme-immobilized functional materials.

Key words: metal-organic framework, carbonization, composites, kinetics, microreactor, immobilized enzyme

摘要:

通过高温碳化制备不同系列碳化金属有机骨架(carbonized metal-organic frameworks,cMOFs),应用于制备洋葱伯克霍尔德菌脂解酶(BCL)微反应器,研究了孔结构和孔道微环境对BCL固定化性能的影响,探索了这些微反应器催化拆分扁桃酸对映体反应的性能。结果表明:cMOFs中的cMIL-53(Al)材料对BCL固定性能最佳,且在循环使用九次后,仍保持(R)-扁桃酸转化率(C)为50%,产物的对映体过剩量(eep)超过99%,酶选择因子(E)大于200。通过一系列表征发现,经高温碳化处理的cMIL-53(Al)孔间结构增大,有利于BCL进入cMOF微孔结构,增加BCL空间活性位点;同时煅烧使其表面羧酸官能团含量增加,有利于BCL通过氢键与其表面进行吸附固定,最终明显提高拆分催化性能。相较于传统的有机碱催化方法,本研究提出的酶固定化微反应器具有可重复使用、催化时间短、产物易于纯化分离以及环境污染较低等优点,为新型酶固定功能材料构建提供了新的策略。

关键词: 金属有机骨架材料, 碳化, 复合材料, 动力学, 微反应器, 固定化酶

CLC Number: