CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 787-796.DOI: 10.11949/0438-1157.20240656
• Surface and interface engineering • Previous Articles
Wenbao LI1(), Jinpeng HU2, Miao DU2,3(
), Pengju PAN1, Guorong SHAN1(
)
Received:
2024-06-13
Revised:
2024-07-06
Online:
2025-03-10
Published:
2025-03-25
Contact:
Miao DU, Guorong SHAN
李文宝1(), 胡锦鹏2, 杜淼2,3(
), 潘鹏举1, 单国荣1(
)
通讯作者:
杜淼,单国荣
作者简介:
李文宝(2000—),男,硕士研究生,liwenbao@zju.edu.cn
基金资助:
CLC Number:
Wenbao LI, Jinpeng HU, Miao DU, Pengju PAN, Guorong SHAN. High strength and toughness P(SBMA-co-AAc)/SiO2 composite hydrogel marine antifouling and drag-reducing coating[J]. CIESC Journal, 2025, 76(2): 787-796.
李文宝, 胡锦鹏, 杜淼, 潘鹏举, 单国荣. 强韧P(SBMA-co-AAc)/SiO2复合水凝胶海洋防污减阻涂层[J]. 化工学报, 2025, 76(2): 787-796.
水凝胶 | SBMA/g | AAc/g | MBAA/g | 2959/g | H2O/g | SiO2/g |
---|---|---|---|---|---|---|
SA-0 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 0 |
SA-5 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 1 |
SA-10 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 2 |
SA-15 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 3 |
Table 1 P(SBMA-co-AAc)/SiO2 composite hydrogels sample formula
水凝胶 | SBMA/g | AAc/g | MBAA/g | 2959/g | H2O/g | SiO2/g |
---|---|---|---|---|---|---|
SA-0 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 0 |
SA-5 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 1 |
SA-10 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 2 |
SA-15 | 3.35 | 3.46 | 0.046 | 0.13 | 13.01 | 3 |
Fig.9 (a) Adhesion energy between SA-15 composite hydrogel and tinplate surface; (b) Infrared spectrum of tinplate surface treated with KH-570 ethanol-acetic acid solution and aqueous solution respectively
1 | Schultz M P, Bendick J A, Holm E R, et al. Economic impact of biofouling on a naval surface ship[J]. Biofouling, 2011, 27(1): 87-98. |
2 | Yebra D M, Kiil S, Dam-Johansen K. Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Progress in Organic Coatings, 2004, 50(2): 75-104. |
3 | Amara I, Miled W, Ben Slama R, et al. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review[J]. Environmental Toxicology and Pharmacology, 2018, 57: 115-130. |
4 | Mawignon F J, Liu J B, Qin L G, et al. The optimization of biomimetic sharkskin riblet for the adaptation of drag reduction[J]. Ocean Engineering, 2023, 275: 114135. |
5 | Salta M, Wharton J A, Stoodley P, et al. Designing biomimetic antifouling surfaces[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368(1929): 4729-4754. |
6 | Gong J P. Friction and lubrication of hydrogels—its richness and complexity[J]. Soft Matter, 2006, 2(7): 544-552. |
7 | Wang X, Su H, Lv W Y, et al. Complex rheological behaviors of loach (Misgurnus anguillicaudatus) skin mucus[J]. Journal of Rheology, 2015, 59(1): 51-62. |
8 | 王平. 新型防污减阻软涂层的研究[D]. 杭州: 浙江大学, 2012. |
Wang P. Studies on a novel anti-fouling and drag-reducing soft coating[D]. Hangzhou: Zhejiang University, 2012. | |
9 | Chen S F, Li L Y, Zhao C, et al. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010, 51(23): 5283-5293. |
10 | Li Q S, Wen C Y, Yang J, et al. Zwitterionic biomaterials[J]. Chemical Reviews, 2022, 122(23): 17073-17154. |
11 | 申佳佳. 两性离子防污减阻水凝胶涂层的研究[D]. 杭州: 浙江大学, 2019. |
Shen J J. Strategy to construct polyzwitterionic coating with non-fouling and drag-reducing performance[D]. Hangzhou: Zhejiang University, 2019. | |
12 | Shen J J, Du M, Wu Z L, et al. Strategy to construct polyzwitterionic hydrogel coating with antifouling, drag-reducing and weak swelling performance[J]. RSC Advances, 2019, 9(4): 2081-2091. |
13 | Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15(14): 1155-1158. |
14 | Haque M A, Kurokawa T, Gong J P. Super tough double network hydrogels and their application as biomaterials[J]. Polymer, 2012, 53(9): 1805-1822. |
15 | 陈再宏, 虞海超, 吴子良, 等. 高强度两性离子聚合物防污减阻水凝胶涂层的制备[J]. 高分子学报, 2024, 55(1): 99-107. |
Chen Z H, Yu H C, Wu Z L, et al. Preparation of high strength zwitterionic polymer hydrogel antifouling and drag reducing coating[J]. Acta Polymerica Sinica, 2024, 55(1): 99-107. | |
16 | Zhang Z, Chao T, Jiang S Y. Physical, chemical, and chemical-physical double network of zwitterionic hydrogels[J]. The Journal of Physical Chemistry. B, 2008, 112(17): 5327-5332. |
17 | Wang Z W, Chen J, Wang L F, et al. Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels[J]. Journal of Materials Chemistry B, 2019, 7(1): 24-29. |
18 | Jin X Q, Jiang H H, Qiao F H, et al. Fabrication of alginate- P(SBMA-co-AAm) hydrogels with ultrastretchability, strain sensitivity, self-adhesiveness, biocompatibility, and self-cleaning function for strain sensors[J]. Journal of Applied Polymer Science, 2021, 138(3): e49697. |
19 | Zhang J, Qian S X, Chen L D, et al. Highly antifouling double network hydrogel based on poly(sulfobetaine methacrylate) and sodium alginate with great toughness[J]. Journal of Materials Science & Technology, 2021, 85: 235-244. |
20 | Zhou J H, Hao B Z, Wang L B, et al. Preparation and characterization of nano-TiO2/chitosan/poly(N-isopropylacrylamide) composite hydrogel and its application for removal of ionic dyes[J]. Separation and Purification Technology, 2017, 176: 193-199. |
21 | Yi F L, Meng F C, Li Y Q, et al. Highly stretchable CNT fiber/PAAm hydrogel composite simultaneously serving as strain sensor and supercapacitor[J]. Composites Part B: Engineering, 2020, 198: 108246. |
22 | Lin P, Ma S H, Wang X L, et al. Molecularly engineered dual-crosslinked hydrogel with ultrahigh mechanical strength, toughness, and good self-recovery[J]. Advanced Materials, 2015, 27(12): 2054-2059. |
23 | Dong M, Han Y, Hao X P, et al. Digital light processing 3D printing of tough supramolecular hydrogels with sophisticated architectures as impact-absorption elements[J]. Advanced Materials, 2022, 34(34): e2204333. |
24 | Lamm M E, Song L Z, Wang Z K, et al. A facile approach to thermomechanically enhanced fatty acid-containing bioplastics using metal-ligand coordination[J]. Polymer Chemistry, 2019, 10(48): 6570-6579. |
25 | Hu J P, Zhang D Z, Li W B, et al. Construction of a soft antifouling PAA/PSBMA hydrogel coating with high toughness and low swelling through the dynamic coordination bonding provided by Al(OH)3 nanoparticles[J]. ACS Applied Materials & Interfaces, 2024, 16(5): 6433-6446. |
26 | Liu W K, Wang A, Yang R B, et al. Water-triggered stiffening of shape-memory polyurethanes composed of hard backbone dangling PEG soft segments[J]. Advanced Materials, 2022, 34(46): 2201914. |
27 | Zhang F J, Wang R, He Y Y, et al. A biomimetic hierarchical structure with a hydrophilic surface and a hydrophobic subsurface constructed from waterborne polyurethanes containing a self-assembling peptide extender[J]. Journal of Materials Chemistry B, 2018, 6(26): 4326-4337. |
28 | 徐朋朋, 杜淼, 郑强. 制备参数对聚乙烯醇水凝胶-玻璃基板摩擦行为的影响[J]. 高分子学报, 2014(5): 708-714. |
Xu P P, Du M, Zheng Q. Influence of preparation parameters on the frictional behavior of PVA hydrogel against glass substrate[J]. Acta Polymerica Sinica, 2014(5): 708-714. | |
29 | Tominaga T, Takedomi N, Biederman H, et al. Effect of substrate adhesion and hydrophobicity on hydrogel friction[J]. Soft Matter, 2008, 4(5): 1033-1040. |
30 | Gong J P, Osada Y. Gel friction: a model based on surface repulsion and adsorption[J]. The Journal of Chemical Physics, 1998, 109(18): 8062-8068. |
31 | Murosaki T, Noguchi T, Kakugo A, et al. Antifouling activity of synthetic polymer gels against cyprids of the barnacle (Balanus amphitrite) in vitro [J]. Biofouling, 2009, 25(4): 313-320. |
32 | Yuk H, Zhang T, Lin S T, et al. Tough bonding of hydrogels to diverse non-porous surfaces[J]. Nature Materials, 2016, 15(2): 190-196. |
[1] | Jiayi YAO, Donghui ZHANG, Zhongli TANG, Wenbin LI. Research on carbon capture by pressure swing adsorption based on two-stage dual reflux [J]. CIESC Journal, 2025, 76(2): 744-754. |
[2] | Siwen ZHANG, Haiming GU, Shanhui ZHAO. Molecular mechanism study on chemical looping gasification of cellulose over iron oxide nanocluster [J]. CIESC Journal, 2025, 76(1): 363-373. |
[3] | Nana SUN, Hongmei DONG, Wenhao GUO, Jian LIU, Jianbo HU, Shuang JIN. Rheological property influencing factors and a pressure drop prediction model for pipeline transportation in thick oil O/W emulsions stabilized by modified magnetic nanoparticles [J]. CIESC Journal, 2024, 75(S1): 143-157. |
[4] | Su TANG, Zi'ao ZHENG, Hanze WEI, Xiaoling XU, Xiaoqiang ZHAI. Preparation and thermal conductivity reinforcement of PMMA/PEG600/CNT composite shaped phase change materials [J]. CIESC Journal, 2024, 75(S1): 309-320. |
[5] | Jingyu WANG, Jia LIU, Jixiang XU, Lei WANG. Synthesis of lamellar PtZn@Silicalite-1 zeolite and its catalytic properties for propane dehydrogenation [J]. CIESC Journal, 2024, 75(9): 3188-3197. |
[6] | Xuehong WU, Xin WEI, Jiawen HOU, Cai LYU, Yong LIU, He LIU, Zhijuan CHANG. Preparation of carbon nanotubes by pyrolysis method and their application in heat dissipation coatings [J]. CIESC Journal, 2024, 75(9): 3360-3368. |
[7] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[8] | Wenyan ZHANG, Hao LIU, Weilong SONG, Pin ZHAO, Xinhua WANG. Construction and performance evaluation of TFN-FO membranes incorporated with UiO-66 nanoparticles of different sizes [J]. CIESC Journal, 2024, 75(5): 1920-1928. |
[9] | Lin ZHANG, Ziyi ZHANG, Yong LI, Shaoping TONG. Preparation of Fe-carbon/nitrogen composites from Fe-MOF-74 precusor and its performance in activating peroxymonosulfate [J]. CIESC Journal, 2024, 75(5): 1882-1889. |
[10] | Zhouyang SHEN, Kang XUE, Qing LIU, Chengxiang SHI, Jijun ZOU, Xiangwen ZHANG, Lun PAN. Research progress on endothermic nanofluid fuels [J]. CIESC Journal, 2024, 75(4): 1167-1182. |
[11] | Yewei DING, Wenbo KANG, Yutong SONG, Qinxi FAN, Yuanhui JI. Mechanism and screening of indomethacin self-assembled nanomedical drugs [J]. CIESC Journal, 2024, 75(11): 4141-4151. |
[12] | Juhui CHEN, Ran AN, Dan LI, Haoming GAO, Kun ZHANG. Effect of van der Waals forces on the motion of magnetic field fluidized nanoparticles [J]. CIESC Journal, 2024, 75(10): 3518-3527. |
[13] | Na XU, Zixuan LI, Zilu LIU, Yaodong LYU, Shiwen ZHANG. Influence of solution environment on the dispersion stability of nanoparticle liquid system [J]. CIESC Journal, 2024, 75(10): 3815-3824. |
[14] | Shiyu YAN, Jiaojiao GAO, Taishun YANG, Shangzhi XIE, Yanjuan YANG, Jing XU. Effect of coordination environment of ruthenium-based catalysts on their performance for polyethylene hydrogenolysis [J]. CIESC Journal, 2024, 75(10): 3588-3599. |
[15] | Ruobing PI, Yunlong ZHOU. Research progress on photocatalytic reduction of carbon dioxide in direct Z-scheme heterojunctions system [J]. CIESC Journal, 2024, 75(10): 3379-3400. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||