CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 2026-2035.DOI: 10.11949/0438-1157.20231282
• Energy and environmental engineering • Previous Articles Next Articles
Jinshan WANG1(), Shixue WANG1,2(), Yu ZHU1,2
Received:
2023-12-04
Revised:
2024-03-12
Online:
2024-06-25
Published:
2024-05-25
Contact:
Shixue WANG
通讯作者:
王世学
作者简介:
王金山(1993—),男,博士研究生,wangjinshanwly@tju.edu.cn
基金资助:
CLC Number:
Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance[J]. CIESC Journal, 2024, 75(5): 2026-2035.
王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035.
Add to citation manager EndNote|Ris|BibTeX
守恒方程 | 表达式 | 源项 |
---|---|---|
质量 | ||
物质 | ||
动量 | ||
电荷 | ||
能量 |
Table 1 HT-PEMFC mathematical model and source terms[28-29]
守恒方程 | 表达式 | 源项 |
---|---|---|
质量 | ||
物质 | ||
动量 | ||
电荷 | ||
能量 |
参数 | 数值 | 文献 |
---|---|---|
流道宽度、高度、脊宽度/m | 1×10-3、1×10-3、1×10-3 | [ |
膜、催化层、扩散层厚度/m | 5×10-5、1×10-5、2.25×10-4 | [ |
催化层中电解液分数 | 0.21 | [ |
催化层和扩散层孔隙率 | 0.4、0.6 | [ |
PEM、CL、GDL和BP密度/(kg/m3) | 1300、2145、1800、2266 | [ |
PEM、CL、GDL和BP比热容/(J/(kg·K)) | 1650、3300、568、2930 | [ |
PEM、CL、GDL和BP热导率/(W/(m·K)) | 0.95、1.5、1.2、20 | [ |
CL、GDL和BP材料的电导率/(S/m) | 500、1000、20000 | [ |
氢气热导率/(W/(m·K)) | [ | |
氧气热导率/(W/(m·K)) | [ | |
水蒸气热导率/(W/(m·K)) | [ | |
氮气热导率/(W/(m·K)) | [ | |
氢气动力黏度/(Pa·s) | [ | |
氧气动力黏度/(Pa·s) | [ | |
水蒸气动力黏度/(Pa·s) | [ | |
氢气扩散系数/(m2/s) | [ | |
氧气扩散系数/(m2/s) | [ | |
水蒸气扩散系数/(m2/s) | [ | |
磷酸掺杂水平 | 10 | [ |
阳极、阴极传递系数 | 0.5、0.45 | [ |
氢气、氧气参考浓度/(mol/m3) | 40.88、40.88 | [ |
Table 2 Parameters in the mathematical model and structure of HT-PEMFC
参数 | 数值 | 文献 |
---|---|---|
流道宽度、高度、脊宽度/m | 1×10-3、1×10-3、1×10-3 | [ |
膜、催化层、扩散层厚度/m | 5×10-5、1×10-5、2.25×10-4 | [ |
催化层中电解液分数 | 0.21 | [ |
催化层和扩散层孔隙率 | 0.4、0.6 | [ |
PEM、CL、GDL和BP密度/(kg/m3) | 1300、2145、1800、2266 | [ |
PEM、CL、GDL和BP比热容/(J/(kg·K)) | 1650、3300、568、2930 | [ |
PEM、CL、GDL和BP热导率/(W/(m·K)) | 0.95、1.5、1.2、20 | [ |
CL、GDL和BP材料的电导率/(S/m) | 500、1000、20000 | [ |
氢气热导率/(W/(m·K)) | [ | |
氧气热导率/(W/(m·K)) | [ | |
水蒸气热导率/(W/(m·K)) | [ | |
氮气热导率/(W/(m·K)) | [ | |
氢气动力黏度/(Pa·s) | [ | |
氧气动力黏度/(Pa·s) | [ | |
水蒸气动力黏度/(Pa·s) | [ | |
氢气扩散系数/(m2/s) | [ | |
氧气扩散系数/(m2/s) | [ | |
水蒸气扩散系数/(m2/s) | [ | |
磷酸掺杂水平 | 10 | [ |
阳极、阴极传递系数 | 0.5、0.45 | [ |
氢气、氧气参考浓度/(mol/m3) | 40.88、40.88 | [ |
温差/K | 温度梯度/(K/cm) | a | b |
---|---|---|---|
0 | 0 | 0 | 433.15 |
5 | 0.10 | 102.04 | 428.10 |
10 | 0.20 | 204.08 | 423.05 |
20 | 0.41 | 408.16 | 412.95 |
30 | 0.61 | 612.24 | 402.84 |
40 | 0.82 | 816.33 | 392.74 |
Table 3 Temperature distribution function parameters in cooling surface
温差/K | 温度梯度/(K/cm) | a | b |
---|---|---|---|
0 | 0 | 0 | 433.15 |
5 | 0.10 | 102.04 | 428.10 |
10 | 0.20 | 204.08 | 423.05 |
20 | 0.41 | 408.16 | 412.95 |
30 | 0.61 | 612.24 | 402.84 |
40 | 0.82 | 816.33 | 392.74 |
Fig.3 Temperature and proton conductivity distribution at the membrane center plane, oxygen concentration and current density distribution at the CL center plane
1 | Han C L, Jiang T, Shang K, et al. Heat and mass transfer performance of proton exchange membrane fuel cells with electrode of anisotropic thermal conductivity[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121957. |
2 | Ferng Y M, Su A, Hou J. Parametric investigation to enhance the performance of a PBI-based high-temperature PEMFC[J]. Energy Conversion and Management, 2014, 78: 431-437. |
3 | Jha V, Hariharan R, Krishnamurthy B. A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120311. |
4 | 张劲, 郭志斌, 张巨佳, 等. 聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究[J]. 化工学报, 2021, 72(1): 589-596. |
Zhang J, Guo Z B, Zhang J J, et al. Study on performance of polyethersulfone-polyvinylpyrrolidone high temperature polymer electrolyte membrane and fuel cell stack[J]. CIESC Journal, 2021, 72(1): 589-596. | |
5 | 李慧, 杨正金, 徐铜文. 高温质子交换膜研究进展[J]. 化工学报, 2021, 72(1): 132-142. |
Li H, Yang Z J, Xu T W. Research progress of high temperature proton exchange membranes[J]. CIESC Journal, 2021, 72(1): 132-142. | |
6 | Vengatesan S, Kim H, Lee S, et al. High temperature operation of PEMFC: a novel approach using MEA with silica in catalyst layer[J]. International Journal of Hydrogen Energy, 2008, 33(1): 171-178. |
7 | 罗来明, 张劲, 郭志斌, 等. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
Luo L M, Zhang J, Guo Z B, et al. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range[J]. CIESC Journal, 2023, 74(4): 1724-1734. | |
8 | Zhao J J, Cai S S, Luo X B, et al. Dynamic characteristics and economic analysis of PEMFC-based CCHP systems with different dehumidification solutions[J]. International Journal of Hydrogen Energy, 2022, 47(22): 11644-11657. |
9 | Kannan A, Aili D, Cleemann L N, et al. Three-layered electrolyte membranes with acid reservoir for prolonged lifetime of high-temperature polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(1): 1008-1017. |
10 | Skorikova G, Rauber D, Aili D, et al. Protic ionic liquids immobilized in phosphoric acid-doped polybenzimidazole matrix enable polymer electrolyte fuel cell operation at 200℃[J]. Journal of Membrane Science, 2020, 608: 118188. |
11 | Quartarone E, Mustarelli P. Polymer fuel cells based on polybenzimidazole/H3PO4 [J]. Energy & Environmental Science, 2012, 5(4): 6436-6444. |
12 | Aili D, Henkensmeier D, Martin S, et al. Polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells: new insights and recent progress[J]. Electrochemical Energy Reviews, 2020, 3(4): 793-845. |
13 | Ghosh P, Ganguly S, Kargupta K. Phosphosilicate nano-network (PPSN)-polybenzimidazole (PBI) composite electrolyte membrane for enhanced proton conductivity, durability and power generation of HT-PEMFC[J]. International Journal of Hydrogen Energy, 2022, 47(75): 32287-32302. |
14 | Li X B, Ma H W, Shen Y C, et al. Dimensionally-stable phosphoric acid-doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2016, 336: 391-400. |
15 | Atak N N, Dogan B, Yesilyurt M K. Investigation of the performance parameters for a PEMFC by thermodynamic analyses: effects of operating temperature and pressure[J]. Energy, 2023, 282: 128907. |
16 | Chen Z J, Zuo W, Zhou K, et al. Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell[J]. Energy, 2023, 278: 127982. |
17 | Das S K, Gibson H A. Three dimensional multi-physics modeling and simulation for assessment of mass transport impact on the performance of a high temperature polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2021, 499: 229844. |
18 | Ryu S K, Vinothkannan M, Kim A R, et al. Effect of type and stoichiometry of fuels on performance of polybenzimidazole-based proton exchange membrane fuel cells operating at the temperature range of 120—160℃[J]. Energy, 2022, 238(B): 121791. |
19 | Caglayan D G, Sezgin B, Devrim Y, et al. Three-dimensional modeling of a high temperature polymer electrolyte membrane fuel cell at different operation temperatures[J]. International Journal of Hydrogen Energy, 2016, 41(23): 10060-10070. |
20 | Scholta J, Messerschmidt M, Jörissen L, et al. Externally cooled high temperature polymer electrolyte membrane fuel cell stack[J]. Journal of Power Sources, 2009, 190(1): 83-85. |
21 | Xia L C, Zhang C Z, Hu M H, et al. Investigation of parameter effects on the performance of high-temperature PEM fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(52): 23441-23449. |
22 | Suzuki A, Oono Y, Williams M C, et al. Evaluation for sintering of electrocatalysts and its effect on voltage drops in high-temperature proton exchange membrane fuel cells (HT-PEMFC)[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18272-18289. |
23 | Wu H C, Wang W W, Ji J Q, et al. Thermal cure-induced crosslinked polybenzimidazole containing 4,5-diazafluorene and pyridine for high-temperature proton exchange membrane[J]. Journal of Power Sources, 2023, 567: 232972. |
24 | Renau J, Barroso J, Lozano A, et al. Design and manufacture of a high-temperature PEMFC and its cooling system to power a lightweight UAV for a high altitude mission[J]. International Journal of Hydrogen Energy, 2016, 41(43): 19702-19712. |
25 | Chippar P, Ju H. Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (PBI) membrane fuel cell[J]. Solid State Ionics, 2012, 225: 30-39. |
26 | Supra J, Janßen H, Lehnert W, et al. Temperature distribution in a liquid-cooled HT-PEFC stack[J]. International Journal of Hydrogen Energy, 2013, 38(4): 1943-1951. |
27 | Reddy E H, Jayanti S, Monder D S. Thermal management of high temperature polymer electrolyte membrane fuel cell stacks in the power range of 1—10 kWe[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20127-20138. |
28 | Yin Y, Wang J B, Yang X L, et al. Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13671-13680. |
29 | Zhang J, Zhang C Z, Hao D, et al. 3D non-isothermal dynamic simulation of high temperature proton exchange membrane fuel cell in the start-up process[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2577-2593. |
30 | Jiao K, Alaefour I E, Li X G. Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes[J]. Fuel, 2011, 90(2): 568-582. |
31 | Xia L C, Xu Q D, He Q J, et al. Numerical study of high temperature proton exchange membrane fuel cell (HT-PEMFC) with a focus on rib design[J]. International Journal of Hydrogen Energy, 2021, 46(40): 21098-21111. |
32 | Mohanty S, Desai A N, Singh S, et al. Effects of the membrane thickness and ionomer volume fraction on the performance of PEMFC with U-shaped serpentine channel[J]. International Journal of Hydrogen Energy, 2021, 46(39): 20650-20663. |
33 | Reddy E H, Monder D S, Jayanti S. Parametric study of an external coolant system for a high temperature polymer electrolyte membrane fuel cell[J]. Applied Thermal Engineering, 2013, 58(1/2): 155-164. |
34 | Zhao J, Jian Q F, Huang Z P. Experimental study on heat transfer performance of vapor chambers with potential applications in thermal management of proton exchange membrane fuel cells[J]. Applied Thermal Engineering, 2020, 180: 115847. |
35 | Harikishan Reddy E, Jayanti S. Thermal management strategies for a 1 kWe stack of a high temperature proton exchange membrane fuel cell[J]. Applied Thermal Engineering, 2012, 48: 465-475. |
36 | Zuliani N. Design and experimental characterization of a 350 W high temperature PEM fuel cell stack[J]. Frattura ed Integrità Strutturale, 2011, 5(15): 29-34. |
37 | Yin C, Gao Y, Li K, et al. Design and numerical analysis of air-cooled proton exchange membrane fuel cell stack for performance optimization[J]. Energy Conversion and Management, 2021, 245: 114604. |
38 | Zhang T Y, Li J, Li Q, et al. Combination effects of flow field structure and assembly force on performance of high temperature proton exchange membrane fuel cells[J]. International Journal of Energy Research, 2021, 45(5): 7903-7917. |
39 | Ubong E U, Shi Z, Wang X. Three-dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell[J]. Journal of the Electrochemical Society, 2009, 156(10): B1276. |
[1] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[2] | Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate [J]. CIESC Journal, 2024, 75(5): 1830-1842. |
[3] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[4] | Jing LI, Fangfang ZHANG, Shuaishuai WANG, Jianhua XU, Pengyuan ZHANG. Effect of cavity structure on flammability limit of n-butane partially premixed flame [J]. CIESC Journal, 2024, 75(5): 2081-2090. |
[5] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[6] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
[7] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[8] | Jin ZHANG, Zhibin GUO, Laiming LUO, Shanfu LU, Yan XIANG. Design and performance of 5 kW reforming methanol high temperature proton exchange membrane fuel cell system [J]. CIESC Journal, 2024, 75(4): 1697-1704. |
[9] | Binbin FENG, Mingjia LU, Zhihong HUANG, Yiwen CHANG, Zhiming CUI. Application and optimization of carbon supports in proton exchange membrane fuel cells [J]. CIESC Journal, 2024, 75(4): 1469-1484. |
[10] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
[11] | Fangtao JIANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN, Jing ZHANG. Efficient synthesis of fluoroethylene carbonate via phase transfer catalysis using [bmim][BF4] [J]. CIESC Journal, 2024, 75(4): 1543-1551. |
[12] | Xiaoying JI, Yuan ZHENG, Xiaopeng LI, Zhen YANG, Wei ZHANG, Shirui QIU, Qianying ZHANG, Canghai LUO, Dongpeng SUN, Dong CHEN, Dongliang LI. Controlled preparation of droplets, particles and capsules by microfluidics and their applications [J]. CIESC Journal, 2024, 75(4): 1455-1468. |
[13] | Ting CHENG, Weizhou JIAO, Youzhi LIU. Application and research progress of functional packings in high-gravity rotating packed bed [J]. CIESC Journal, 2024, 75(4): 1414-1428. |
[14] | Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed [J]. CIESC Journal, 2024, 75(4): 1497-1507. |
[15] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||