CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1432-1446.DOI: 10.11949/0438-1157.20241037
• Reviews and monographs • Previous Articles Next Articles
Xiangrui ZHAI1(), Wei ZHANG1(
), Qianqian ZHANG1, Jiuzhe QU2, Xufei YANG1, Yajun DENG1, Bo YU3
Received:
2024-09-14
Revised:
2024-12-02
Online:
2025-05-12
Published:
2025-04-25
Contact:
Wei ZHANG
翟祥瑞1(), 张伟1(
), 张倩倩1, 曲玖哲2, 杨绪飞1, 邓雅军1, 宇波3
通讯作者:
张伟
作者简介:
翟祥瑞(2000—),男,硕士研究生,z13562791001@163.com
基金资助:
CLC Number:
Xiangrui ZHAI, Wei ZHANG, Qianqian ZHANG, Jiuzhe QU, Xufei YANG, Yajun DENG, Bo YU. Active heat transfer enhancement technology for solid-liquid phase change energy storage based on external field disturbance[J]. CIESC Journal, 2025, 76(4): 1432-1446.
翟祥瑞, 张伟, 张倩倩, 曲玖哲, 杨绪飞, 邓雅军, 宇波. 基于外场扰动的固液相变储能主动强化换热技术[J]. 化工学报, 2025, 76(4): 1432-1446.
Fig.6 Transient distributions of charge density, temperature field, and liquid fraction at Fourier number = 2.0 under different electric Rayleigh numbers(thermal Rayleigh number =10000, AR=3/4)[58]
Fig.8 Changes in average temperature and average flow rate during the melting process (M1,M2,M3 represent the positions of the ultrasonic vibration surfaces, RM represents the condition without ultrasonic vibration)[64]
Fig.13 The impact of the coupling effect of magnetic fields and ultrasonic fields on the heat transfer and energy storage performance of materials: melting time, energy storage capacity, and energy storage efficiency[71]
1 | Li Z, Lu Y J, Huang R, et al. Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage[J]. Applied Energy, 2021, 283: 116277. |
2 | Mahon H, O'Connor D, Friedrich D, et al. A review of thermal energy storage technologies for seasonal loops[J]. Energy, 2022, 239: 122207. |
3 | Zhao X, Ma X W, Chen B Y, et al. Challenges toward carbon neutrality in China: strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176: 105959. |
4 | De La Peña L, Guo R, Cao X J, et al. Accelerating the energy transition to achieve carbon neutrality[J]. Resources, Conservation and Recycling, 2022, 177: 105957. |
5 | Chen X, Lin B Q. Towards carbon neutrality by implementing carbon emissions trading scheme: policy evaluation in China[J]. Energy Policy, 2021, 157: 112510. |
6 | Ahmed A, Baig H, Sundaram S, et al. Use of nanofluids in solar PV/thermal systems[J]. International Journal of Photoenergy, 2019, 2019: 8039129. |
7 | Li Y N, Fu C L, Wang Z Q, et al. Novel cellulose-based films with highly efficient photothermal performance for sustainable solar evaporation and solar-thermal power generation[J]. Journal of Cleaner Production, 2024, 458: 142416. |
8 | 张墨耕, 赵良举, 刘朝, 等. 利用LNG冷能与工业余热的有机朗肯循环复合系统优化分析[J]. 化工学报, 2014, 65(8): 3144-3151. |
Zhang M G, Zhao L J, Liu C,et al. Optimization and analyses of organic Rankine cycle combined system utilizing cold energy of LNG and industrial waste heat[J]. CIESC Journal, 2014, 65(8): 3144-3151. | |
9 | Li J X, Fan X Y, Li Y H, et al. A novel system of liquid air energy storage with LNG cold energy and industrial waste heat: thermodynamic and economic analysis[J]. Journal of Energy Storage, 2024, 86: 111359. |
10 | Xia R Q, Zhang W Y, Yang Y N, et al. Transparent wood with phase change heat storage as novel green energy storage composites for building energy conservation[J]. Journal of Cleaner Production, 2021, 296: 126598. |
11 | 崔艳琦. 相变控温调湿建筑复合材料的研究进展[J]. 化工学报, 2018, 69(S1): 1-7. |
Cui Y Q. Research on development of composite phase change humidity-control material in buildings[J]. CIESC Journal, 2018, 69(S1): 1-7. | |
12 | Wang H C, Han J B, Zhang R Y, et al. Heat-power peak shaving and wind power accommodation of combined heat and power plant with thermal energy storage and electric heat pump[J]. Energy Conversion and Management, 2023, 297: 117732. |
13 | Riahi A, Mosleh H J, Kavian S, et al. Performance analysis and transient simulation of a vapor compression cooling system integrated with phase change material as thermal energy storage for electric peak load shaving[J]. Journal of Energy Storage, 2021, 35: 102316. |
14 | Shanmugavalli P, Rajaraman R. Thermal performance enhancement methods of phase change materials for thermal energy storage systems—a review[J]. Materials Today: Proceedings, DOI: 10.1016/j.matpr.2023.08.171 . |
15 | Zhi M Y, Yue S, Zheng L L, et al. Recent developments in solid-solid phase change materials for thermal energy storage applications[J]. Journal of Energy Storage, 2024, 89: 111570. |
16 | Sheikholeslami M, Haq R U, Shafee A, et al. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins[J]. International Journal of Heat and Mass Transfer, 2019, 130: 1322-1342. |
17 | Zhang Z G, Shi G Q, Wang S P, et al. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material[J]. Renewable Energy, 2013, 50: 670-675. |
18 | Cheng W L, Xie B, Zhang R M, et al. Effect of thermal conductivities of shape stabilized PCM on under-floor heating system[J]. Applied Energy, 2015, 144: 10-18. |
19 | Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628. |
20 | 张春伟, 陈静, 王成刚, 等. 相变储能技术的传热强化方法综述[J]. 制冷学报, 2023, 44(1): 1-13. |
Zhang C W, Chen J, Wang C G, et al. Review on heat transfer enhancement methods of latent heat storage technology[J]. Journal of Refrigeration, 2023, 44(1): 1-13. | |
21 | Punniakodi B M S, Senthil R. Recent developments in nano-enhanced phase change materials for solar thermal storage[J]. Solar Energy Materials and Solar Cells, 2022, 238: 111629. |
22 | 张欣宇, 杨晓宏, 张燕楠, 等. 基于二维梯度树状肋相变储热系统强化传热机理[J]. 化工学报, 2022, 73(10): 4399-4409. |
Zhang X Y, Yang X H, Zhang Y N, et al. Heat transfer enhancement mechanism of phase change heat storage system based on two-dimensional gradient dendritic fins[J]. CIESC Journal, 2022, 73(10): 4399-4409. | |
23 | 王烨, 朱欣悦, 孙振东. 基于POD降阶模型的正弦波翅片扁管管翅式换热器流动与传热特性分析[J]. 化工学报, 2022, 73(5): 1986-1994. |
Wang Y, Zhu X Y, Sun Z D. Flow and heat transfer characteristics analysis of flat tube-bank-fin heat exchanger with sine wave fin based on POD reduced-order model[J]. CIESC Journal, 2022, 73(5): 1986-1994. | |
24 | Li C, Li Q, Ge R H. Assessment on the melting performance of a phase change material based shell and tube thermal energy storage device containing leaf-shaped longitudinal fins[J]. Journal of Energy Storage, 2023, 60: 106574. |
25 | Rashid F L, Khalaf A F, Alizadeh A, et al. Numerical investigation of the effect of the number of fins on the phase-change material melting inside a shell-and-tube cylindrical thermal energy storage[J]. Case Studies in Thermal Engineering, 2024, 60: 104754. |
26 | Kurşun B, Balta M. Evaluation of the different inner and outer channel geometry combinations for optimum melting and solidification performance in double pipe energy storage with phase change material: a numerical study[J]. Journal of Energy Storage, 2023, 65: 107250. |
27 | Lu B H, Zhang Y X, Wang Z H, et al. Effect of shell shape on the charging and discharging performance of a vertical latent heat thermal energy storage unit: an experimental study[J]. Journal of Energy Storage, 2022, 56: 105996. |
28 | 黄艳, 章学来. 十二醇-癸酸-纳米粒子复合相变材料传热性能[J]. 化工学报, 2016, 67(6): 2271-2276. |
Huang Y, Zhang X L. Heat transfer property of lauryl alcohol-capric acid-nanoparticle composite phase change materials[J]. CIESC Journal, 2016, 67(6): 2271-2276. | |
29 | Panda D, Dilip Saraf S, Gangawane K M. Expanded graphite nanoparticles-based eutectic phase change materials for enhancement of thermal efficiency of pin-fin heat sink arrangement[J]. Thermal Science and Engineering Progress, 2024, 48: 102417. |
30 | 吴志根, 赵长颖, 顾清之. 多孔介质在高温相变蓄热中的强化换热[J]. 化工学报, 2012, 63(S1): 119-122. |
Wu Z G, Zhao C Y, Gu Q Z. Heat transfer enhancement of high temperature thermal energy storage using porous materials[J]. CIESC Journal, 2012, 63(S1): 119-122. | |
31 | Xu Y, Zheng Z J, Chen S, et al. Parameter analysis and fast prediction of the optimum eccentricity for a latent heat thermal energy storage unit with phase change material enhanced by porous medium[J]. Applied Thermal Engineering, 2021, 186: 116485. |
32 | Wang J J, Yu Y, Song L F, et al. Thermal management performance and optimization of a novel system combining heat pipe and composite fin for prismatic lithium-ion batteries[J]. Energy Conversion and Management, 2024, 302: 118106. |
33 | Yang C, Xu Y, Xu X R, et al. Melting performance analysis of finned metal foam thermal energy storage tube under steady rotation[J]. International Journal of Heat and Mass Transfer, 2024, 226: 125458. |
34 | Zhang J, Cao Z, Huang S, et al. Improving the melting performance of phase change materials using novel fins and nanoparticles in tubular energy storage systems[J]. Applied Energy, 2022, 322: 119416. |
35 | 王宁, 张晨宇, 徐洪涛, 等. 填充多级相变材料的套管式储热器性能研究[J]. 化工学报, 2019, 70(S2): 191-200. |
Wang N, Zhang C Y, Xu H T, et al. Performance investigation of sleeve tube heat exchanger filled with multi-layer phase change materials[J]. CIESC Journal, 2019, 70(S2): 191-200. | |
36 | Liu J W, Liu Z P, Nie C D. Phase transition enhancement through circumferentially arranging multiple phase change materials in a concentric tube[J]. Journal of Energy Storage, 2021, 40: 102672. |
37 | Diaconu B M, Cruceru M, Anghelescu L. A critical review on heat transfer enhancement techniques in latent heat storage systems based on phase change materials. Passive and active techniques, system designs and optimization[J]. Journal of Energy Storage, 2023, 61: 106830. |
38 | Harichandan S, Rath P, Das M K. Effect of electric field on melting characteristics of nano composite phase change material: a numerical study[J]. Applied Thermal Engineering, 2024, 254: 123835. |
39 | Bo G F, Basem A, Sabri L S, et al. The effects of external magnetic field amplitude on atomic and thermal behavior of phase change materials: a molecular dynamic[J]. International Communications in Heat and Mass Transfer, 2024, 156: 107606. |
40 | Yan Z J, Yu Z, Yang T T, et al. Impact of ultrasound on the melting process and heat transfer of phase change material[J]. Energy Procedia, 2019, 158: 5014-5019. |
41 | 王正良. 磁场强化磁性液体自然对流传热的机理[J]. 化工学报, 2005, 56(2): 235-238. |
Wang Z L. Mechanism of natural convection heat transfer of magnetic fluid enhanced by magnetic field[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(2): 235-238. | |
42 | Joulin A, Younsi Z, Zalewski L, et al. Experimental and numerical investigation of a phase change material: thermal-energy storage and release[J]. Applied Energy, 2011, 88(7): 2454-2462. |
43 | Yehya A, Adebayo P, Naji H. Using a static magnetic field to control the rate of latent energy storage and release of phase-change materials[J]. Journal of Energy Storage, 2024, 80: 110275. |
44 | Nguyen L M Q, Alshuraiaan B, Hajjar A, et al. Controlling energy loss from roof structures equipped by round-corner double semi-hexagonal ferro-phase change material layer using magnetic field[J]. Journal of Cleaner Production, 2023, 428: 139335. |
45 | Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems[J]. Journal of Cleaner Production, 2019, 215: 963-977. |
46 | Fan Y B, Yu M, Zhang C W, et al. Melting performance enhancement of phase change material with magnetic particles under rotating magnetic field[J]. Journal of Energy Storage, 2021, 38: 102540. |
47 | Lu B H, Zhang Y X, Xiao J F, et al. Experimental investigation of the effect of rotating magnetic field on the melting performance enhancement of paraffin/nano-Fe3O4 composite phase change material[J]. Journal of Energy Storage, 2024, 83: 110751. |
48 | Farahani S D, Farahani A D, Mamoei A J, et al. Enhancement of phase change material melting using nanoparticles and magnetic field in the thermal energy storage system with strip fins[J]. Journal of Energy Storage, 2023, 57: 106282. |
49 | Mehryan S A M, Tahmasebi A, Izadi M, et al. Melting behavior of phase change materials in the presence of a non-uniform magnetic-field due to two variable magnetic sources[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119184. |
50 | Yang Z L, Walvekar R, Wong W P, et al. Advances in phase change materials, heat transfer enhancement techniques, and their applications in thermal energy storage: a comprehensive review[J]. Journal of Energy Storage, 2024, 87: 111329. |
51 | Atten P. Electrohydrodynamic instability and motion induced by injected space charge in insulating liquids[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(1): 1-17. |
52 | Castellanos A, Atten P. Numerical modeling of finite amplitude convection of liquids subjected to unipolar injection[C]//1985 Annual Meeting Industry Applications Society. Toronto, ON, Canada: IEEE, 1985: 1580-1585. |
53 | Chu B. Thermodynamics of electrically conducting fluids[J]. Physics of Fluids, 1959, 2(5): 473-484. |
54 | Sun Z H, Li B Y, Zhou C T, et al. Organic phase change materials melting with electrohydrodynamics (EHD): numerical simulation and experimental validation[J]. International Journal of Heat and Mass Transfer, 2023, 217: 124646. |
55 | Nakhla D, Sadek H, Cotton J S. Melting performance enhancement in latent heat storage module using solid extraction electrohydrodynamics (EHD)[J]. International Journal of Heat and Mass Transfer, 2015, 81: 695-704. |
56 | Hassen W, Oztop H F, Kolsi L, et al. Analysis of the electro-thermo-convection induced by a strong unipolar injection between two concentric or eccentric cylinders[J]. Numerical Heat Transfer, Part A: Applications, 2017, 71(7): 789-804. |
57 | Huang J Y, Selvakumar R D, Guan Y F, et al. Numerical investigation of injection-induced electro-convection in a dielectric liquid between two eccentric cylinders[J]. International Journal of Heat and Fluid Flow, 2020, 83: 108594. |
58 | He K, Wang L, Huang J X. Electrohydrodynamic enhancement of phase change material melting in circular-elliptical annuli[J]. Energies, 2021, 14(23): 8090. |
59 | 丛健, 高蓬辉, 张东海, 等. 超声波对液滴冻结状态及传热的影响[J]. 化工学报, 2020, 71(11): 5117-5128. |
Cong J, Gao P H, Zhang D H, et al. Effect of ultrasonic on freezing state and heat transfer of droplet[J]. CIESC Journal, 2020, 71(11): 5117-5128. | |
60 | Murray R, Groulx D. Modeling convection during melting of a phase change material[C]//Proceedings of the COMSOL Conference. Boston, USA, 2011. |
61 | Cui W, Li X X, Li X Y, et al. Combined effects of nanoparticles and ultrasonic field on thermal energy storage performance of phase change materials with metal foam[J]. Applied Energy, 2022, 309: 118465. |
62 | Guo J F, Li Z, Xie Y, et al. Improved phase change performance of ultrasonic-assisted melting: a visualized experimental study[J]. Energy, 2024, 306: 132500. |
63 | Shahsavar A, Moradi M H, Arıcı M, et al. An in-depth study of the effect of ultrasonic field on the melting characteristics of pure and nano-enhanced PCMs using thermal and digital imagery[J]. Journal of Energy Storage, 2024, 78: 110054. |
64 | Guo C X, Lan M X, Zhang D W, et al. Studying the performance of phase change heat storage enhanced by ultrasonic energy[J]. Applied Thermal Engineering, 2023, 231: 120920. |
65 | Rahmanian S, Shahsavar A, Rahmanian-Koushkaki H, et al. Numerical feasibility study of improving the melting performance of horizontal and vertical double-pipe latent heat storage systems using ultrasonic field[J]. Journal of Energy Storage, 2023, 67: 107594. |
66 | 田镇岭, 陈志豪, 宇高义郎. 微通道型气泡泵驱动两相流传热特性[J]. 化工学报, 2024, 75(10): 3452-3463. |
Tian Z L, Chen Z H, Utaka Y. Study on two-phase flow heat transfer characteristics driven by microchannel bubble pump[J]. CIESC Journal, 2024, 75(10): 3452-3463. | |
67 | Choi S H, Ko H S, Sohn D K. Bubble-driven flow enhancement of heat discharge of latent heat thermal energy storage[J]. Energy, 2022, 244: 123168. |
68 | Choi S H, Sohn D K, Ko H S. Heat transfer enhancement of latent heat thermal energy storage with nanoparticle by bubble-driven flow[J]. Applied Thermal Engineering, 2023, 231: 120922. |
69 | Tian S, Ma J H, Shao S Q, et al. Experimental and analytical study on continuous frozen/melting processes of latent thermal energy storage driven by bubble flow[J]. Energy, 2024, 290: 130244. |
70 | Liu Z C, Quan Z H, Zhao Y H, et al. Thermal performance analysis of ice thermal storage device based on micro heat pipe arrays: role of bubble-driven flow[J]. Renewable Energy, 2023, 217: 119151. |
71 | Li H X, Zhuang Y J, Feng J C. Multi-scale experimental analysis on the coupled effects of ultrasonic field and magnetic field on the melting and energy storage performances for hybrid nano-enhanced phase change materials[J]. Journal of Energy Storage, 2024, 84: 110801. |
72 | Lu L, Zhou H T, Sun P Z, et al. Synergistic effect of ultrasonic and magnetic fields on the performance of non-aqueous iron-vanadium redox flow battery with deep eutectic solvent electrolyte[J]. Journal of Energy Storage, 2023, 63: 107036. |
73 | Zhou F, Jia Q L, Yang Q F, et al. Research on a new industrial frequency electromagnetic coupled thermal molten salt heat storage system and its uniformity[J]. International Communications in Heat and Mass Transfer, 2024, 154: 107337. |
74 | Foroughi F, Lamb J J, Burheim O S, et al. Sonochemical and sonoelectrochemical production of energy materials[J]. Catalysts, 2021, 11(2): 284. |
75 | Merrouche D, Mohammedi K, Belaidi I. Coupling the VOF and the MHD models for the simulation of bubble rising in a metallic liquid[J]. International Journal of Material Forming, 2008, 1(1): 1107-1110. |
[1] | Luochang WU, Zeyu YANG, Jianguo YAN, Xutao ZHU, Yang CHEN, Zichen WANG. Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels [J]. CIESC Journal, 2025, 76(4): 1583-1594. |
[2] | Guanglei WANG, Xiaoling LIU, Zhen XU, Lin LI. Performances of gas-water direct contact heat exchange for compressed air energy storage [J]. CIESC Journal, 2025, 76(4): 1595-1603. |
[3] | Deqi PENG, Kuilin LIU, Yang WU, Tianlan YU, Zhuowei TAN, Shuying WU, Ying CHEN, Mingcheng TANG, Jianguo PENG. Enhanced heat transfer performance of vibrating reciprocating helix and micro-morphological analysis of crystallization scale [J]. CIESC Journal, 2025, 76(4): 1559-1568. |
[4] | Jiayuan FAN, Wenhui ZENG, Zhichao REN, Wentao ZHANG, Shuang LYU. Preparation and heat transfer enhancement of phase change slurry with multi-phase change temperature [J]. CIESC Journal, 2025, 76(4): 1863-1874. |
[5] | Cong QI, Linfei YUE. Heat transfer characteristics of interwoven network minichannel heat sinks [J]. CIESC Journal, 2025, 76(4): 1534-1544. |
[6] | Rui SUN, Junfeng WANG, Haojie XU, Bufa LI, Yaxian XU. Research progress on heat transfer enhancement mechanism of spray cooling technology [J]. CIESC Journal, 2025, 76(4): 1404-1421. |
[7] | Zhaoxue ZHANG, Zhengyu LI, Wenhui CUI, Qian WANG, Zhiping WANG, Linghui GONG. Research on cascade recovery and utilization of cold energy in liquid hydrogen energy storage based on liquid neon - liquid nitrogen [J]. CIESC Journal, 2025, 76(4): 1731-1741. |
[8] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
[9] | Shuli LIU, Wenhao ZHOU, Shaoliang ZHANG, Yongliang SHEN. Heat release performance of direct absorption/storage solar collector [J]. CIESC Journal, 2025, 76(4): 1722-1730. |
[10] | Shaoyang MA, Hanzhuo XU, Liangliang ZHANG, Baochang SUN, Haikui ZOU, Yong LUO, Guangwen CHU. Research progress of liquid-liquid heterogeneous reactions and intensification methods towards their transfer processes [J]. CIESC Journal, 2025, 76(4): 1391-1403. |
[11] | Yiming ZHANG, Peng YANG, Xianbing JI, Jixing REN, Lei ZHANG, Zheng MIAO. Thermal performance of multi-loop flat loop heat pipes [J]. CIESC Journal, 2025, 76(3): 1018-1028. |
[12] | Ke LI, Biping XIN, Jian WEN. Sequential quadratic programming optimization of continuous variable density multi-layer insulation coupled with vapor cooled shield in liquid hydrogen storage tank [J]. CIESC Journal, 2025, 76(3): 985-994. |
[13] | Yanfang YU, Puyu ZHANG, Huibo MENG, Wen SUN, Wen LI, Wenlong QIAO, Mengqiong ZHANG. Experimental study on heat transfer and turbulent fluctuation characteristics of biomimetic conch static mixer [J]. CIESC Journal, 2025, 76(3): 1040-1049. |
[14] | Lyusheng ZHANG, Zhihong WANG, Qing LIU, Xuewen LI, Renmin TAN. Research progress in carbon dioxide capture using liquid-liquid phase change absorbents [J]. CIESC Journal, 2025, 76(3): 933-950. |
[15] | Junbing XIAO, Xiangyu ZHONG, Jiandi REN, Fangfang ZHONG, Changhui LIU, Chuankun JIA. Research on the heat storage properties of stearic acid phase change materials enhanced by bio-carbon materials [J]. CIESC Journal, 2025, 76(3): 1312-1322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||