CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1391-1403.DOI: 10.11949/0438-1157.20241161
• Reviews and monographs • Previous Articles Next Articles
Shaoyang MA(), Hanzhuo XU, Liangliang ZHANG, Baochang SUN, Haikui ZOU, Yong LUO, Guangwen CHU(
)
Received:
2024-10-21
Revised:
2024-11-14
Online:
2025-05-12
Published:
2025-04-25
Contact:
Guangwen CHU
马韶阳(), 徐涵卓, 张亮亮, 孙宝昌, 邹海魁, 罗勇, 初广文(
)
通讯作者:
初广文
作者简介:
马韶阳(2001—),男,博士研究生,2023410004@mail.buct.edu.cn
基金资助:
CLC Number:
Shaoyang MA, Hanzhuo XU, Liangliang ZHANG, Baochang SUN, Haikui ZOU, Yong LUO, Guangwen CHU. Research progress of liquid-liquid heterogeneous reactions and intensification methods towards their transfer processes[J]. CIESC Journal, 2025, 76(4): 1391-1403.
马韶阳, 徐涵卓, 张亮亮, 孙宝昌, 邹海魁, 罗勇, 初广文. 液-液非均相反应与传递过程强化方法研究进展[J]. 化工学报, 2025, 76(4): 1391-1403.
Fig.4 (a) Mass-transfer and kinetic steps in the phase-transfer alkylation of phenylacetonitrile; (b) Main reaction and side reactions in alkylation of phenylacetonitrile with n-butyl bromide; (c) Conversion as a function of catalyst concentration at different aqueous-to-organic phase volumetric flow ratios; (d) The effect of residence time on the conversion rate of reaction; (e) Conversion, selectivity, and productivity as functions of AO flow ratio; (f) Effect of residence time on reaction selectivity
Fig.5 Bimolecular elimination reaction (E2) mechanism, bimolecular nucleophilic substitution reaction (SN2) mechanism and intramolecular nucleophilic substitution reaction (SNi) mechanism
Fig.6 (a) Apparatus used in the experiments: standard stirred tank, high-speed homogenizer and rotating packed bed; (b) Theoretical relation of the apparent reaction rate and mass transfer efficiency; (c) Effects of rotating speeds and temperature on reaction rate in the stirred tank; (d) The results of reaction intensifying by a homogenizer; (e) The results of reaction intensifying by a rotating packed bed
Fig.8 (a) Schematic diagram of the experimental apparatus; (b) The size distribution and Sauter diameter of dispersed droplets in stirred tank reactor at 500 r/min; (c) The size distribution and Sauter diameter of dispersed phase droplets in the hydraulic cavitation reactor with inlet pressure of 2.5 bar; (d) Temperature changes in a hydrodynamic cavitation reactor; (e) Temperature changes in a stirred-tank reactor
Fig.10 (a) Schematic diagram of the microchannel reactor experimental device; (b) Network of the o-xylene nitration reaction; (c) The plot of conversion of o-xylene versus residence time at different temperatures; (d) The effect of residence time on mass transfer; (e) The effect of temperature on mass transfer
1 | Pu X, Li G X, Song Y, et al. Droplet coalescence phenomena during liquid-liquid heterogeneous reactions in microreactors[J]. Industrial & Engineering Chemistry Research, 2017, 56(43): 12316-12325. |
2 | Cao J Z, Tao S Y. Liquid-liquid reactions performed by cellular reactors[J]. Nature Communications, 2024, 15(1): 5579. |
3 | Wang K, Li L T, Xie P, et al. Liquid-liquid microflow reaction engineering[J]. Reaction Chemistry & Engineering, 2017, 2(5): 611-627. |
4 | 马韶阳, 徐涵卓, 张亮亮, 等. 液-液非均相反应器研究进展[J]. 化工学报, 2024, 75(3): 727-742. |
Ma S Y, Xu H Z, Zhang L L, et al. Research progress of reactors for liquid-liquid heterogeneous system[J]. CIESC Journal, 2024, 75(3): 727-742. | |
5 | Ghotli R A, Abdul Aziz A R, Ibrahim S. Liquid-liquid mass transfer studies in various stirred vessel designs[J]. Reviews in Chemical Engineering, 2015, 31(4): 329-343. |
6 | Moioli E. Process intensification and energy transition: a necessary coupling?[J]. Chemical Engineering and Processing- Process Intensification, 2022, 179: 109097. |
7 | Keil F J. Process intensification[J]. Reviews in Chemical Engineering, 2018, 34(2): 135-200. |
8 | Sitter S, Chen Q, Grossmann I E. An overview of process intensification methods[J]. Current Opinion in Chemical Engineering, 2019, 25: 87-94. |
9 | Song J, Cui Y J, Sheng L, et al. Determination of nitration kinetics of p-nitrotoluene with a homogeneously continuous microflow[J]. Chemical Engineering Science, 2022, 247: 117041. |
10 | Wu Z Y, Fang J J, Xie Q L, et al. Macroscopic kinetics modelling of liquid-liquid reaction system: epoxidation of fatty acid methyl esters[J]. Industrial Crops and Products, 2018, 122: 266-276. |
11 | Sun B C, Zhang L L, Weng Z, et al. Sulfonation of alkylbenzene using liquid sulfonating agent in rotating packed bed: experimental and numerical study[J]. Chemical Engineering and Processing: Process Intensification, 2017, 119: 93-100. |
12 | Tian Y T, Li Z X, Mei S J, et al. Alkylation of isobutane and 2-butene by concentrated sulfuric acid in a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2018, 57(40): 13362-13371. |
13 | Zhang Y D, Zhang L L, Xiong X Y, et al. Matching relation between intrinsic kinetics and liquid-liquid mass transfer of medium-rate reaction: take 1,1,2-trichloroethane dehydrochlorination as an example[J]. Chemical Engineering Science, 2023, 280(5): 119102. |
14 | 张一栋. 超重力强化液液非均相分子混合与反应过程研究[D]. 北京: 北京化工大学, 2024. |
Zhang Y D. Resarch of process intensification of liquid-liquid hetergeneous micromixing and reaction by high gravity technology[D]. Beijing: Beijing University of Chemical Technology, 2024. | |
15 | Rudelstorfer G, Neubauer M, Siebenhofer M, et al. Esterification of acetic acid with methanol and simultaneous product isolation by liquid-liquid extraction in a Taylor-Couette disc contactor[J]. Chemie Ingenieur Technik, 2022, 94(5): 671-680. |
16 | Liu S E, Pasha M, Shang M J, et al. Kinetic study on the reaction routes in the oxidation of K/A oil by nitric acid with microreactors[J]. Chemical Engineering Science, 2023, 266: 118273. |
17 | 鲍俊. 超重力反应器强化缩合反应新工艺的研究[D]. 北京: 北京化工大学, 2015. |
Bao J. Study on the intensification of the new process of condensation reaction with a higee reactor[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
18 | Chu G W, Xu H Z, Luo Y, et al. Higee-intensified process reengineering in fine chemistry industry: principle and case studies[J]. Scientia Sinica Chimica, 2024, 54(11): 1959-1966 |
19 | Xie Y, Feng M J, Zhang M, et al. Kinetics model of piperacillin synthesis in a microreactor[J]. Chemical Engineering Science, 2022, 259: 117821. |
20 | Zhang L L, Wang F Y, Zhang Y D, et al. Enhanced chemical deacidification of crude soybean oil by rotating packed bed reactor[J]. Chemical Engineering Science, 2023, 282(2): 119242. |
21 | Kashid M N, Yuranov I, Raspail P, et al. Cyclization of pseudoionone to β-ionone: reaction mechanism and kinetics[J]. Industrial & Engineering Chemistry Research, 2011, 50(13): 7920-7926. |
22 | Yan Z F, Du C C, Wang Y B, et al. Dehydrochlorination of β-chlorohydrin in continuous microflow system: reaction kinetics and process intensification[J]. Chemical Engineering Journal, 2022, 444: 136498. |
23 | Santacesaria E, Turco R, Russo V, et al. Kinetics of soybean oil epoxidation in a semibatch reactor[J]. Industrial & Engineering Chemistry Research, 2020, 59(50): 21700-21711. |
24 | Guo S, Zhan L W, Li B D. Nitration of o-xylene in the microreactor: reaction kinetics and process intensification[J]. Chemical Engineering Journal, 2023, 468(15): 143468. |
25 | Zhan W, Wang J N, He C X, et al. Kinetics of glyoxal oxidation by nitric acid in a capillary microreactor[J]. Chemical Engineering Science, 2023, 276(15): 118813. |
26 | Zhang Y D, Zhang L L, Wang Z X, et al. Liquid-liquid heterogeneous mixing efficiency in a rotating packed bed reactor[J]. AIChE Journal, 2023, 69(6): e18000. |
27 | Bourne J R. Mixing and the selectivity of chemical reactions[J]. Organic Process Research & Development, 2003, 7(4): 471-508. |
28 | Cogliano T, Russo V, Eränen K, et al. Epoxidation of vegetable oils in continuous device: kinetics, mass transfer and reactor modelling[J]. Chemical Engineering Science, 2024, 294(15): 120079. |
29 | Zhang H R, Bai M Q, Wang X Y, et al. Thermal runaway incidents—a serious cause of concern: an analysis of runaway incidents in China[J]. Process Safety and Environmental Protection, 2021, 155: 277-286. |
30 | Wang Z, Cao D L, Xu Z S, et al. Thermal safety study on the synthesis of HMX by nitrourea method[J]. Process Safety and Environmental Protection, 2020, 137: 282-288. |
31 | Li S F, Zhang X L, Ji D S, et al. Continuous flow nitration of 3-[2-chloro-4-(trifluoromethyl) phenoxy]benzoic acid and its chemical kinetics within droplet-based microreactors[J]. Chemical Engineering Science, 2022, 255(29):117657. |
32 | Adhvaryu A, Erhan S Z. Epoxidized soybean oil as a potential source of high-temperature lubricants[J]. Industrial Crops and Products, 2002, 15(3): 247-254. |
33 | de Quadros J V, Giudici R. Epoxidation of soybean oil at maximum heat removal and single addition of all reactants[J]. Chemical Engineering and Processing: Process Intensification, 2016, 100: 87-93. |
34 | Vianello C, Piccolo D, Lorenzetti A, et al. Study of soybean oil epoxidation: effects of sulfuric acid and the mixing program[J]. Industrial & Engineering Chemistry Research, 2018, 57(34): 11517-11525. |
35 | Sagandira M B, Sagandira C R, Watts P. Continuous flow synthesis of xylidines via biphasic nitration of xylenes and nitro-reduction[J]. Journal of Flow Chemistry, 2021, 11(2): 193-208. |
36 | Santacesaria E, Turco R, Russo V, et al. Soybean oil epoxidation: kinetics of the epoxide ring opening reactions[J]. Processes, 2020, 8(9): 1134. |
37 | Yao H, Ni L, Liu Y S, et al. Process hazard and thermal risk evaluation of m-xylene nitration with mixed acid[J]. Process Safety and Environmental Protection, 2023, 175: 238-250. |
38 | Patel B A, Pereira C S. Process intensification at scale: an industrial perspective[J]. Chemical Engineering and Processing- Process Intensification, 2022, 181: 109098. |
39 | Hosseini Kakavandi F, Rahimi M, Jafari O, et al. Liquid-liquid two-phase mass transfer in T-type micromixers with different junctions and cylindrical pits[J]. Chemical Engineering and Processing- Process Intensification, 2016, 107: 58-67. |
40 | Li G X, Pu X, Shang M J, et al. Intensification of liquid-liquid two-phase mass transfer in a capillary microreactor system[J]. AIChE Journal, 2019, 65(1): 334-346. |
41 | Bello Yaya N, Habert A C, de Araujo Kronemberger F. Evaluation of a hollow fiber membrane contactor reactor for reactive extraction in biodiesel production[J]. Chemical Engineering and Processing - Process Intensification, 2023, 194: 109574. |
42 | Gonawan F N, Abu Bakar M Z, Abd Karim K, et al. The effect of mass transfer on reaction rates during immobilized β-galactosidase-catalyzed conversion of lactose in hollow fiber membrane[J]. Chemical Engineering Communications, 2019, 206(5): 630-646. |
43 | Wang Z H, Yang T, Liu Z X, et al. Mass transfer in a rotating packed bed: a critical review[J]. Chemical Engineering and Processing - Process Intensification, 2019, 139: 78-94. |
44 | Vashisth V, Nigam K D P, Kumar V. Design and development of high shear mixers: fundamentals, applications and recent progress[J]. Chemical Engineering Science, 2021, 232(15): 116296. |
45 | Zhang J L, Xu S Q, Li W. High shear mixers: A review of typical applications and studies on power draw, flow pattern, energy dissipation and transfer properties[J]. Chemical Engineering and Processing: Process Intensification, 2012, 57: 25-41. |
46 | Magosso M, Hazen L J W, van den Berg M, et al. Intensified sulfite reduction of alkyl hydroperoxides in a rotor-stator spinning-disc reactor[J]. Industrial & Engineering Chemistry Research, 2021, 60(43): 15540-15548. |
47 | Sharma M, Mohapatra T, Ghosh P. Hydrodynamics, mass and heat transfer study for emerging heterogeneous Fenton process in multiphase fluidized-bed reactor system for wastewater treatment-a review[J]. Chemical Engineering Research and Design, 2021, 171: 48-62. |
48 | Wang D X, Gu C J, Sun C, et al. Flow pattern transition and wave characteristics of impinging jet flow on a spinning disk reactor[J]. Chemical Engineering Journal, 2023, 451: 138790. |
49 | Zhao S N, Dong Z Y, Yao C Q, et al. Liquid-liquid two-phase flow in ultrasonic microreactors: cavitation, emulsification, and mass transfer enhancement[J]. AIChE Journal, 2018, 64(4): 1412-1423. |
50 | Yang M, Gao Y, Liu Y, et al. Integration of microfluidic systems with external fields for multiphase process intensification[J]. Chemical Engineering Science, 2021, 234(28): 116450. |
51 | Azimi N, Rahimi M. Magnetic nanoparticles stimulation to enhance liquid-liquid two-phase mass transfer under static and rotating magnetic fields[J]. Journal of Magnetism and Magnetic Materials, 2017, 422: 188-196. |
52 | Zhao S N, Yao C Q, Dong Z Y, et al. Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor[J]. Chemical Engineering Science, 2018, 186: 122-134. |
53 | Liang C, Zhu Y G, Sun B C, et al. Rotating packed bed reactor integrated with plasma: mass transfer intensification and wastewater treatment[J]. Industrial & Engineering Chemistry Research, 2023, 62(21): 8444-8453. |
54 | Yao C Q, Zhao Y C, Ma H Y, et al. Two-phase flow and mass transfer in microchannels: a review from local mechanism to global models[J]. Chemical Engineering Science, 2021, 229: 116017. |
55 | Plouffe P, Roberge D M, Macchi A. Liquid-liquid flow regimes and mass transfer in various micro-reactors[J]. Chemical Engineering Journal, 2016, 300: 9-19. |
56 | Manzano Martínez A N, Assirelli M, van der Schaaf J. Droplet size and liquid-liquid mass transfer with reaction in a rotor-stator Spinning Disk Reactor[J]. Chemical Engineering Science, 2021, 242: 116706. |
57 | Yang H, Chu G, Xiang Y, et al. Characterization of micromixing efficiency in rotating packed beds by chemical methods[J]. Chemical Engineering Journal, 2006, 121(2/3): 147-152. |
58 | Noorpoor Z, Rahmani M. A review of computational fluid dynamics modeling for isobutane alkylation: process optimization, reactor design, and future perspectives[J]. Energy & Fuels, 2024, 38(13): 11403-11436. |
59 | Pedersen M J, Holm T L, Rahbek J P, et al. Full-scale continuous mini-reactor setup for heterogeneous Grignard alkylation of a pharmaceutical intermediate[J]. Organic Process Research & Development, 2013, 17(9): 1142-1148. |
60 | Keglevich G, Grün A, Bálint E. Microwave irradiation and phase transfer catalysis in C-, O- and N-alkylation reactions[J]. Current Organic Synthesis, 2013, 10(5): 751-763. |
61 | Simon P, Lőrinczi B, Szatmári I. Alkoxyalkylation of electron-rich aromatic compounds[J]. International Journal of Molecular Sciences, 2024, 25(13): 6966. |
62 | 李明伟, 李涛, 任保增. 烷基化工艺及硫酸烷基化反应器研究进展[J]. 化工进展, 2017, 36(5): 1573-1580. |
Li M W, Li T, Ren B Z. Advance of alkylation process and concentrated sulfuric acid alkylation reactor[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1573-1580. | |
63 | Jovanović J, Rebrov E V, Nijhuis T A X, et al. Phase-transfer catalysis in segmented flow in a microchannel: fluidic control of selectivity and productivity[J]. Industrial & Engineering Chemistry Research, 2010, 49(6): 2681-2687. |
64 | Tian Y, Mei S, Zhang L L, et al. Improved H2SO4-catalyzed alkylation reaction in a rotating packed bed reactor by adding additives[J]. The Canadian Journal of Chemical Engineering, 2022, 100(11): 3395-3407. |
65 | Ueno M, Hisamoto H, Kitamorib T, et al. Phase-transfer alkylation reactions using microreactors[J]. Chemical Communications, 2003(8): 936-937. |
66 | Nieves-Remacha M J, Torres M, Ruiz-Abad M, et al. Scale-up of N-alkylation reaction using phase-transfer catalysis with integrated separation in flow[J]. Reaction Chemistry & Engineering, 2019, 4(2): 334-345. |
67 | Yang G W, Zhang Y Y, Xie R, et al. High-activity organocatalysts for polyether synthesis via intramolecular ammonium cation assisted SN2 ring-opening polymerization[J]. Angewandte Chemie International Edition, 2020, 59(39): 16910-16917. |
68 | Tang T T, Fan X S, Jin Y, et al. Synthesis and characterization of graft copolymers with poly(epichlorohydrin-co-ethylene oxide) as backbone by combination of ring-opening polymerization with living anionic polymerization[J]. Polymer, 2014, 55(16): 3680-3687. |
69 | Kester J E. Vinylidene Chloride (VDC)[M]//Encyclopedia of Toxicology. Amsterdam: Elsevier, 2014: 942-947. |
70 | Cowdrey W A, Hughes E D, Ingold C K, et al. Reaction kinetics and the Walden inversion. Part Ⅵ. Relation of steric orientation to mechanism in substitutions involving halogen atoms and simple or substituted hydroxyl groups[J]. Journal of the Chemical Society, 1937: 1252-1271. |
71 | Aleskerov M A, Yufit S S, Kucherov V F. The mechanism of the β-elimination reaction[J]. Russian Chemical Reviews, 1978, 47(2): 134-147. |
72 | Zhang J S, Lu Y C, Jin Q R, et al. Determination of kinetic parameters of dehydrochlorination of dichloropropanol in a microreactor[J]. Chemical Engineering Journal, 2012, 203: 142-147. |
73 | de Araujo Filho C A, Heredia S, Eränen K, et al. Advanced millireactor technology for the kinetic investigation of very rapid reactions: dehydrochlorination of 1, 3-dichloro-2-propanol to epichlorohydrin[J]. Chemical Engineering Science, 2016, 149: 35-41. |
74 | Zhang L L, Li T J, Zhang Y D, et al. Simulation and experimental study on mechanism and kinetics of 1,1,2-trichloroethane dehydrochlorination reaction[J]. Chemical Engineering Science, 2022, 262(23): 117990. |
75 | Prileschajew N. Oxydation ungesättigter Verbindungen mittels organischer Superoxyde[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1909, 42(4): 4811-4815. |
76 | Olivieri G V, de Quadros J V, Giudici R. Epoxidation reaction of soybean oil: experimental study and comprehensive kinetic modeling[J]. Industrial & Engineering Chemistry Research, 2020, 59(42): 18808-18823. |
77 | Kleiner J, Hinrichsen O. Epoxidation of methyl oleate in a rotor-stator spinning disc reactor[J]. Chemical Engineering and Processing- Process Intensification, 2019, 136: 152-162. |
78 | Chavan V P, Patwardhan A V, Gogate P R. Intensification of epoxidation of soybean oil using sonochemical reactors[J]. Chemical Engineering and Processing: Process Intensification, 2012, 54: 22-28. |
79 | Piccolo D, Vianello C, Lorenzetti A, et al. Epoxidation of soybean oil enhanced by microwave radiation[J]. Chemical Engineering Journal, 2019, 377(1): 120113. |
80 | He W, Fang Z, Ji D, et al. Epoxidation of soybean oil by continuous micro-flow system with continuous separation[J]. Organic Process Research & Development, 2013, 17(9): 1137-1141. |
81 | Olivieri G V, Meira P A, de Mattos T T, et al. Microreactor x millireactor: experimental performance in the epoxidation of soybean oil[J]. Chemical Engineering and Processing - Process Intensification, 2023, 193: 109562. |
82 | Santacesaria E, Renken A, Russo V, et al. Biphasic model describing soybean oil epoxidation with H2O2 in continuous reactors[J]. Industrial & Engineering Chemistry Research, 2012, 51(26): 8760-8767. |
83 | Wu Z Y, Zheng T, Wu L H, et al. Novel reactor for exothermic heterogeneous reaction systems: intensification of mass and heat transfer and application to vegetable oil epoxidation[J]. Industrial & Engineering Chemistry Research, 2017, 56(18): 5231-5238. |
84 | Cai J J, Wu Z Y, Gao N F, et al. Novel packed bed reactor designed for prileschajew epoxidation of fatty acid methyl ester: intensification of mass/heat transfer[J]. Chemical Engineering and Processing - Process Intensification, 2022, 176: 108960. |
85 | Patra S, Mosiagin I, Katayev D, et al. Organic nitrating reagents[J]. Synthesis, 2022, 54(15): 3432-3472. |
86 | Badgujar D M, Talawar M B, Mahulikar P P. Review on greener and safer synthesis of nitro compounds[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(1): 24-34. |
87 | Patel S S, Patel D B, Patel H D. Synthetic protocols for aromatic nitration: a review[J]. ChemistrySelect, 2021, 6(6): 1337-1356. |
88 | Gillespie R J, Hughes E D. Kinetics and mechanism of aromatic nitration[J]. Nature, 1949, 163(4146): 599. |
89 | Lan Z, Lu Y C. Continuous nitration of o-dichlorobenzene in micropacked-bed reactor: process design and modelling[J]. Journal of Flow Chemistry, 2021, 11(2): 171-179. |
90 | Hussain A, Sharma M, Patil S, et al. Design and scale-up of continuous di-nitration reaction using pinched tube flow reactor[J]. Journal of Flow Chemistry, 2021, 11(3): 611-624. |
91 | 秦能, 姚军燕, 刘有智. 喷射硝化法生产硝化甘油的模拟计算[J]. 含能材料, 2002, 10(4): 4. |
Qin N, Yao J Y, Liu Y Z, et al. Simulating computation of injection nitrator producing nitroglycerine[J]. Energetic Materials, 2002, 10(4): 4. | |
92 | 刘晶, 景青, 陈松, 等. 硝化甘油喷射硝化器喷雾效果优化及试验验证[J].爆破器材, 2016, 45(5): 6. |
Liu J, Jing Q, Chen S, et al. Optimization and experiment verification of nitration spray characteristic used in nitroglycerin[J]. Explosive Materials, 2016, 45(5): 6. | |
93 | 王凯, 吕阳成, 邵华伟, 等. 微反应系统内非均相传递和反应过程强化[C]//第六届全国化学工程与生物化工年会. 长沙, 2010. |
Wang K, Lyu Y C, Shao H W, et al. Enhancement of multiphase transport and reactions with micro-structured chemical systems[C]//Proceedings of the 6th National Chemical Engineering and Biochemistry Annual Meeting. Changsha, 2010. | |
94 | 黄正梁, 聂元清, 杨遥, 等. 液-液喷射混合装置微观混合特性的研究进展[J]. 化工进展, 2018, 37(S1): 1-11. |
Huang Z L, Nie Y Q, Yang Y, et al.Research progress in micro-mixing characteristic of liquid-liquid jet mixers[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 1-11. | |
95 | 廖启江, 秦宏云, 周鸣亮, 等. 高剪切混合器研究与应用进展[J]. 化工进展, 2019, 38(3): 1160-1175. |
Liao Q J, Qin H Y, Zhou M L, et al. Progress of researches and applications for high shear mixers[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1160-1175. |
[1] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
[2] | Luochang WU, Zeyu YANG, Jianguo YAN, Xutao ZHU, Yang CHEN, Zichen WANG. Experimental study on convection heat transfer characteristics of supercritical carbon dioxide flowing in mini square channels [J]. CIESC Journal, 2025, 76(4): 1583-1594. |
[3] | Xiangrui ZHAI, Wei ZHANG, Qianqian ZHANG, Jiuzhe QU, Xufei YANG, Yajun DENG, Bo YU. Active heat transfer enhancement technology for solid-liquid phase change energy storage based on external field disturbance [J]. CIESC Journal, 2025, 76(4): 1432-1446. |
[4] | Jiayuan FAN, Wenhui ZENG, Zhichao REN, Wentao ZHANG, Shuang LYU. Preparation and heat transfer enhancement of phase change slurry with multi-phase change temperature [J]. CIESC Journal, 2025, 76(4): 1863-1874. |
[5] | Deqi PENG, Kuilin LIU, Yang WU, Tianlan YU, Zhuowei TAN, Shuying WU, Ying CHEN, Mingcheng TANG, Jianguo PENG. Enhanced heat transfer performance of vibrating reciprocating helix and micro-morphological analysis of crystallization scale [J]. CIESC Journal, 2025, 76(4): 1559-1568. |
[6] | Guanglei WANG, Xiaoling LIU, Zhen XU, Lin LI. Performances of gas-water direct contact heat exchange for compressed air energy storage [J]. CIESC Journal, 2025, 76(4): 1595-1603. |
[7] | Cong QI, Linfei YUE. Heat transfer characteristics of interwoven network minichannel heat sinks [J]. CIESC Journal, 2025, 76(4): 1534-1544. |
[8] | Rui SUN, Junfeng WANG, Haojie XU, Bufa LI, Yaxian XU. Research progress on heat transfer enhancement mechanism of spray cooling technology [J]. CIESC Journal, 2025, 76(4): 1404-1421. |
[9] | Yihao JIN, Junxin LUO, Zhangmao HU, Wei WANG, Qian YIN. Experimental investigation on hydrophilic functionalized MgSO4/expanded vermiculite composites for water adsorption and heat storage [J]. CIESC Journal, 2025, 76(4): 1852-1862. |
[10] | Yiming ZHANG, Peng YANG, Xianbing JI, Jixing REN, Lei ZHANG, Zheng MIAO. Thermal performance of multi-loop flat loop heat pipes [J]. CIESC Journal, 2025, 76(3): 1018-1028. |
[11] | Ke LI, Biping XIN, Jian WEN. Sequential quadratic programming optimization of continuous variable density multi-layer insulation coupled with vapor cooled shield in liquid hydrogen storage tank [J]. CIESC Journal, 2025, 76(3): 985-994. |
[12] | Yanfang YU, Puyu ZHANG, Huibo MENG, Wen SUN, Wen LI, Wenlong QIAO, Mengqiong ZHANG. Experimental study on heat transfer and turbulent fluctuation characteristics of biomimetic conch static mixer [J]. CIESC Journal, 2025, 76(3): 1040-1049. |
[13] | Haochen TIAN, Zhixian MA, Zhihao WANG. Film condensation heat transfer characteristics of R1234ze(E) on a horizontal three-dimensional finned tube [J]. CIESC Journal, 2025, 76(3): 975-984. |
[14] | Ke QI, Di WANG, Zhe XIE, Dongsheng CHEN, Yunlong ZHOU, Lingfang SUN. Research on transient characteristics of solid oxide fuel cells considering coupling features of multiphysics fields [J]. CIESC Journal, 2025, 76(3): 1264-1274. |
[15] | Qin SUN, Guoqing ZHOU, Wanling ZHAI, Shan GAO, Qianqian LUO, Jian QU. Heat transfer characteristics of topology optimized channel flat-plate pulsating heat pipe under local multiple heat sources [J]. CIESC Journal, 2025, 76(3): 1006-1017. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||