CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1513-1522.DOI: 10.11949/0438-1157.20240855
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Lu LIU1,2(), Kai WAN2, Wenyue WANG2, Tai WANG1,2(
), Jiancheng TANG3, Shaoheng WANG4
Received:
2024-07-29
Revised:
2024-10-20
Online:
2025-05-12
Published:
2025-04-25
Contact:
Tai WANG
刘璐1,2(), 万开2, 王文玥2, 王太1,2(
), 汤建成3, 王少恒4
通讯作者:
王太
作者简介:
刘璐(1984—),女,博士,教授,luliu@ncepu.edu.cn
基金资助:
CLC Number:
Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration[J]. CIESC Journal, 2025, 76(4): 1513-1522.
刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522.
催化剂 | 孔隙率ε | 颗粒直径dp/μm | 密度ρ/ (kg/m3) | 比热容cp / (J/(kg∙K)) | 热导率λs/ (W/(m∙K)) |
---|---|---|---|---|---|
Fe2O3 | 0.5 | 590 | 5240 | 700 | 0.58 |
Table 1 Structure and performance parameters of Fe2O3
催化剂 | 孔隙率ε | 颗粒直径dp/μm | 密度ρ/ (kg/m3) | 比热容cp / (J/(kg∙K)) | 热导率λs/ (W/(m∙K)) |
---|---|---|---|---|---|
Fe2O3 | 0.5 | 590 | 5240 | 700 | 0.58 |
条件 | 温度/K | 温度的相对误差/% | |
---|---|---|---|
文献[ | 数值模拟 | ||
He-0.21 MPa | 214.12 | 16.06 | 0.91 |
He-0.70 MPa | 214.09 | 214.67 | 0.27 |
Table 2 Comparsion of results
条件 | 温度/K | 温度的相对误差/% | |
---|---|---|---|
文献[ | 数值模拟 | ||
He-0.21 MPa | 214.12 | 16.06 | 0.91 |
He-0.70 MPa | 214.09 | 214.67 | 0.27 |
1 | Kang D H, An J H, Lee C J. Numerical modeling and optimization of thermal insulation for liquid hydrogen storage tanks[J]. Energy, 2024, 291: 130143. |
2 | Ahmad A, Oko E, Ibhadon A. Comparative energy and exergy analysis of ortho-para hydrogen and non-ortho-para hydrogen conversion in hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 2024, 78: 991-1003. |
3 | Skaugen G, Berstad D, Wilhelmsen Ø. Comparing exergy losses and evaluating the potential of catalyst-filled plate-fin and spiral-wound heat exchangers in a large-scale Claude hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6663-6679. |
4 | Cardella U, Decker L, Klein H. Roadmap to economically viable hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13329-13338. |
5 | Li K Y, Zhang S G, Liu G L. Model for analyzing the energy efficiency of hydrogen liquefaction process considering the variation of hydrogen liquefaction ratio and precooling temperature[J]. International Journal of Hydrogen Energy, 2022, 47(57): 24194-24211. |
6 | Sun H, Xu J M, Wang C, et al. Optimization and analysis of a cascaded dual mixed refrigerant hydrogen liquefaction process considering the influence of pre-cooling stages[J]. International Journal of Hydrogen Energy, 2023, 48(81): 31653-31670. |
7 | Tang J H, Li Y X, Zhu J L, et al. Study on the flow and heat transfer characteristics of gaseous hydrogen in heat exchange tubes coupled with ortho-para hydrogen conversion[J]. International Journal of Hydrogen Energy, 2024, 77: 272-280. |
8 | Xu P, Wen J, Li K, et al. Review of the continuous catalytic ortho-para hydrogen conversion technology for hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 2024, 62: 473-487. |
9 | 唐璐, 邱利民, 姚蕾, 等. 氢液化系统的研究进展与展望[J]. 制冷学报, 2011, 32(6): 1-8. |
Tang L, Qiu L M, Yao L, et al. Review on research and developments of hydrogen liquefaction systems[J]. Journal of Refrigeration, 2011, 32(6): 1-8. | |
10 | Krasae-in S, Stang J H, Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4524-4533. |
11 | Riaz A, Qyyum M A, Hussain A, et al. Significance of ortho-para hydrogen conversion in the performance of hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2023, 48(68): 26568-26582. |
12 | Morales-Ospino R, Celzard A, Fierro V. Strategies to recover and minimize boil-off losses during liquid hydrogen storage[J]. Renewable and Sustainable Energy Reviews, 2023, 182: 113360. |
13 | O'Neill K T, Al Ghafri S, da Silva Falcão B, et al. Hydrogen ortho-para conversion: process sensitivities and optimisation[J]. Chemical Engineering and Processing - Process Intensification, 2023, 184: 109272. |
14 | Xu Y F, Bi Y J, Ju Y L. The thermodynamic analysis on the catalytical ortho-para hydrogen conversion during the hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2024, 54: 1329-1342. |
15 | Aziz M. Liquid hydrogen: a review on liquefaction, storage, transportation, and safety[J]. Energies, 2021, 14(18): 5917. |
16 | Cardella U, Decker L, Sundberg J, et al. Process optimization for large-scale hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12339-12354. |
17 | Yang J H, Yoon Y, Ryu M, et al. Integrated hydrogen liquefaction process with steam methane reforming by using liquefied natural gas cooling system[J]. Applied Energy, 2019, 255: 113840. |
18 | Berstad D, Skaugen G, Wilhelmsen Ø. Dissecting the exergy balance of a hydrogen liquefier: analysis of a scaled-up Claude hydrogen liquefier with mixed refrigerant pre-cooling[J]. International Journal of Hydrogen Energy, 2021, 46(11): 8014-8029. |
19 | Xu P, Lei G, Xu Y Y, et al. Study on continuous cooling process coupled with ortho-para hydrogen conversion in plate-fin heat exchanger filled with catalyst[J]. International Journal of Hydrogen Energy, 2022, 47(7): 4690-4703. |
20 | 王昊成, 杨敬瑶, 董学强, 等. 10 t/d级氢液化装置流程热力分析与优化[J]. 化工学报, 2022, 73(11): 5106-5117. |
Wang H C, Yang J Y, Dong X Q, et al. Thermodynamic analysis and optimization of 10 t/d hydrogen liquefaction process[J]. CIESC Journal, 2022, 73(11): 5106-5117. | |
21 | 赵欣, 陈强, 文键, 等. 正仲转化换热一体化大规模氢液化流程模拟[J]. 化学工程, 2023, 51(1): 36-40. |
Zhao X, Chen Q, Wen J, et al. Simulation on large-scale hydrogen liquefaction process integrating ortho-para conversion and heat exchange[J]. Chemical Engineering (China), 2023, 51(1): 36-40. | |
22 | Wilhelmsen Ø, Berstad D, Aasen A, et al. Reducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processes[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5033-5047. |
23 | Donaubauer P J, Cardella U, Decker L, et al. Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion during liquefaction[J]. Chemical Engineering & Technology, 2019, 42(3): 669-679. |
24 | Hutchinson H L. Analysis of catalytic ortho-parahydrogen reaction mechanisms[D]. Boulder, Colorado, USA: University of Colorado, 1966: 58-122. |
25 | Hånde R, Wilhelmsen Ø. Minimum entropy generation in a heat exchanger in the cryogenic part of the hydrogen liquefaction process: on the validity of equipartition and disappearance of the highway[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15045-15055. |
26 | 李启铭, 张磊, 徐攀, 等. 氢液化流程中催化换热一体化可行性研究[J]. 化学工程, 2021, 49(7): 26-30. |
Li Q M, Zhang L, Xu P, et al. Feasibility on integration of catalysis and heat transfer in hydrogen liquefaction process[J]. Chemical Engineering (China), 2021, 49(7): 26-30. | |
27 | 徐攀, 文键, 厉彦忠, 等. 氢正仲转化耦合流动换热板翅式换热器研究[J]. 西安交通大学学报, 2021, 55(12): 16-24. |
Xu P, Wen J, Li Y Z, et al. Study on hydrogen ortho-para conversion coupled with flow and heat transfer of the plate fin heat exchanger[J]. Journal of Xi'an Jiaotong University, 2021, 55(12): 16-24. | |
28 | Xu P, Wen J, Wang S M, et al. Study on performance comparison of different fin combinations of catalyst filled plate fin heat exchanger for hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 2022, 47(56): 23661-23678. |
29 | Marquardt E D, Le J P, Radebaugh R. Cryogenic material properties database[M]//Cryocoolers 11. Boston, MA: Springer US, 2002: 681-687. |
30 | Kays W M, London A L. Compact Heat Exchangers[M]. 2nd ed. New York: McGraw-Hill Book, 1964: 142-181. |
31 | Goyal M, Chakravarty A, Atrey M D. Two dimensional model for multistream plate fin heat exchangers[J]. Cryogenics, 2014, 61: 70-78. |
[1] | Chengcheng XU, Suola SHAO, Wenjian WEI, Xu ZHENG. Research on heating performance of direct-condensation thermal storage aluminum radiant heating panel under multiple working conditions [J]. CIESC Journal, 2025, 76(4): 1545-1558. |
[2] | Liwen ZHAO, Guilian LIU. Performance enhancement and parameter optimization of complex catalytic reaction system based on system integration [J]. CIESC Journal, 2025, 76(3): 1111-1119. |
[3] | Wenlong JIA, Huan XIAO, Xiangyu LENG, Qiaojing HUANG, Chengwei LIU, Xia WU. Experimental and numerical simulation of ultrasonic cavitation microjet cleaning of heavy deposition in crude oil storage tank [J]. CIESC Journal, 2025, 76(3): 1288-1296. |
[4] | Jun WAN, Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution [J]. CIESC Journal, 2025, 76(3): 1064-1075. |
[5] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Current status and prospects of research on fluidization characteristics of high-density particles [J]. CIESC Journal, 2025, 76(2): 466-483. |
[6] | Xiaohang ZHONG, Wei XU, Wen ZHANG, Li XU, Yuxin WANG. A critical review on the effects of Fe impurity on H2 production via alkaline water electrolysis [J]. CIESC Journal, 2025, 76(2): 519-531. |
[7] | Chuanchao HE, Jinghong ZHOU, Yueqiang CAO, Yao SHI, Xinggui ZHOU. Bed-particle dual scale coupled simulation on Ag/SiO2 catalyzed hydrogenation of oxalate to methyl glycolate [J]. CIESC Journal, 2025, 76(2): 654-666. |
[8] | Jingyu JIA, Deqi KONG, Yuanhui SHEN, Donghui ZHANG, Wenbin LI, Zhongli TANG. Simulation and analysis of ammonia separation process by pressure swing adsorption from synthetic ammonia reactor-off gas [J]. CIESC Journal, 2025, 76(2): 718-730. |
[9] | Jiayi YAO, Donghui ZHANG, Zhongli TANG, Wenbin LI. Research on carbon capture by pressure swing adsorption based on two-stage dual reflux [J]. CIESC Journal, 2025, 76(2): 744-754. |
[10] | Ke ZHANG, Weijie REN, Mengna WANG, Kaifeng FAN, Liping CHANG, Jiabin LI, Tao MA, Jinping TIAN. Liquid-liquid mixing characteristics of Bunsen reaction products in microchannels [J]. CIESC Journal, 2025, 76(2): 623-636. |
[11] | Zeyu ZHANG, Ping WANG, Kailun DAI, Weijia QIAN, Subhajit Roy, Ruiyang SHUAI, Antonio Ferrante. Combustion characteristics and NO production of axially staged premixed NH3/CH4 turbulent swirling flames [J]. CIESC Journal, 2025, 76(2): 835-845. |
[12] | Zhijiao JI, Xiaofang ZHANG, Wen GAN, Yunpeng XUE. Influence of support on the performance of single atom electrocatalyst for ammonia synthesis and the control strategy [J]. CIESC Journal, 2025, 76(1): 18-39. |
[13] | Shan GUO, Yu TIAN, Yongbin XU, Peng WANG, Zhiming LIU. Synthesis of a high-efficacy medium-entropy alloy catalyst via the recycling of spent batteries and its subsequent performance evaluation [J]. CIESC Journal, 2025, 76(1): 231-240. |
[14] | Hanbin WANG, Shuai HU, Fenglei BI, Junsen LI, Laibin HE. Desorption performance analysis of a metal hydride reactor with novel corrugated fins based on finite element method [J]. CIESC Journal, 2025, 76(1): 221-230. |
[15] | Xianming GAO, Wenxuan YANG, Shaohui LU, Xiaosong REN, Fangcai LU. Influence of droplet merging and jumping by dual-groove structures on superhydrophobic surfaces [J]. CIESC Journal, 2025, 76(1): 208-220. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 266
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 139
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||