CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1513-1522.DOI: 10.11949/0438-1157.20240855

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration

Lu LIU1,2(), Kai WAN2, Wenyue WANG2, Tai WANG1,2(), Jiancheng TANG3, Shaoheng WANG4   

  1. 1.Hebei Key Laboratory of Low Carbon and High Efficiency Power Generation Technology, Baoding 071003, Hebei, China
    2.Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China
    3.Beijing Dazhen Technology Co. , Ltd. , Beijing 100080, China
    4.Hebei Kude Refrigeration Technology Co. , Ltd. , Baoding 071051, Hebei, China
  • Received:2024-07-29 Revised:2024-10-20 Online:2025-05-12 Published:2025-04-25
  • Contact: Tai WANG

基于氦膨胀制冷的正仲氢转化耦合流动换热研究

刘璐1,2(), 万开2, 王文玥2, 王太1,2(), 汤建成3, 王少恒4   

  1. 1.河北省低碳高效发电技术重点实验室,河北 保定 071003
    2.华北电力大学动力工程系,河北 保定 071003
    3.北京大臻科技有限公司,北京 100080
    4.河北酷德制冷科技有限公司,河北 保定 071051
  • 通讯作者: 王太
  • 作者简介:刘璐(1984—),女,博士,教授,luliu@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51876065);中央高校基本科研业务费专项资金项目(2023MS123)

Abstract:

In order to explore the coupled flow and heat transfer characteristics with orthohydrogen and parahydrogen conversion in the hydrogen liquefaction process based on helium expansion refrigeration, the orthohydrogen and parahydrogen conversion reaction with flow and heat transfer performance of hydrogen gas in a four-flow plate-fin heat exchanger were studied by using CFD numerical simulation method. The effects of catalyst particle size and porosity, hydrogen inlet Re, low-pressure helium to hydrogen mass flow ratio (mr) on flow and heat transfer performance and outlet volume fraction of para-hydrogen were analyzed. The research results show that: when the porosity increases from 0.3 to 0.7, the heat transfer enhancement factor TEF can be increased by 71.59% at most; the particle size increases from 390 μm to 790 μm, and the TEF can be increased by a maximum of 37.05%; the use of larger porosity and catalyst particle size is more conducive to improving the comprehensive heat transfer performance of the hydrogen channel. When the hydrogen inlet Re decreases from 1500 to 500, the TEF can be increased by up to 147.96%. The channel heat transfer performance is better under low Re operating conditions. When the mass flow ratio of low-pressure helium gas to hydrogen gas mr = 6, the heat transfer performance of hydrogen gas in the finned channel reaches its optimal state through the coupling of orthohydrogen and parahydrogen conversion with flow and heat transfer. The research results of this article can provide theoretical guidance for the hydrogen liquefaction system of large-scale helium expansion refrigeration.

Key words: hydrogen liquefaction, orthohydrogen and parahydrogen conversion, flow and heat transfer, catalyst, numerical simulation

摘要:

为探寻基于氦膨胀制冷的氢液化流程中正仲氢转化耦合流动换热特性,采用CFD数值模拟方法,以四股流板翅式换热器为研究对象,研究了氢气在填料微通道内的正仲转化反应和流动换热性能,分析了催化剂粒径和孔隙率,氢气入口Re,低压氦气与氢气质量流量比mr对流动换热性能及出口仲氢体积分数的影响。研究结果表明:孔隙率由0.3增大为0.7,换热增强因子TEF最大可以提升71.59%;粒径由390 μm增大至790 μm,TEF最大可以提升37.05%;选用较大孔隙率和催化剂粒径更有利于提升氢通道综合换热性能。氢气入口Re由1500减小为500,TEF最多可以提升147.96%,低Re运行工况的通道换热性能更优。当低压氦气与氢气质量流量比值mr为6时,氢气在翅片通道内正仲转化耦合流动传热性能达到最优。研究结果可为大型氦膨胀制冷的氢液化系统提供理论指导。

关键词: 氢液化, 正仲氢转化, 流动传热, 催化剂, 数值模拟

CLC Number: