CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 897-908.DOI: 10.11949/0438-1157.20241095
• Material science and engineering, nanotechnology • Previous Articles
Yichong CHEN1,2(
), Xingyu JIA1, Wenyu ZHONG1, Yuhui SHI1, Yao PENG1, Jiayang SUN1, Dongdong HU1, Ling ZHAO1,2(
)
Received:2024-09-30
Revised:2024-12-04
Online:2025-03-10
Published:2025-03-25
Contact:
Ling ZHAO
陈弋翀1,2(
), 贾星雨1, 钟文宇1, 施俞晖1, 彭瑶1, 孙嘉阳1, 胡冬冬1, 赵玲1,2(
)
通讯作者:
赵玲
作者简介:陈弋翀(1994—),男,博士,特聘副研究员,chenyc@ecust.edu.cn
基金资助:CLC Number:
Yichong CHEN, Xingyu JIA, Wenyu ZHONG, Yuhui SHI, Yao PENG, Jiayang SUN, Dongdong HU, Ling ZHAO. Microcellular thermoplastic polyurethane with gradient structure and its properties[J]. CIESC Journal, 2025, 76(2): 897-908.
陈弋翀, 贾星雨, 钟文宇, 施俞晖, 彭瑶, 孙嘉阳, 胡冬冬, 赵玲. 具有梯度结构的微孔热塑性聚氨酯及其性能[J]. 化工学报, 2025, 76(2): 897-908.
Add to citation manager EndNote|Ris|BibTeX
Fig.5 Microstructure of foaming materials prepared at different foaming temperatures under a certain saturation pressure (5 MPa) after shrinkage following the primary temperature rising foaming
Fig.6 Microstructure of foaming materials prepared at different saturation pressures under a foaming temperature (130℃) after shrinkage following the primary temperature rising foaming
Fig.7 Microstructure of foaming materials prepared at different foaming temperatures under a certain saturation pressure (5 MPa) after secondary depressurization foaming
| 1 | Zhai W T, Jiang J J, Park C B. A review on physical foaming of thermoplastic and vulcanized elastomers[J]. Polymer Reviews, 2022, 62(1): 95-141. |
| 2 | Iba H, Nishikawa Y, Urayama K. Nonlinear stress-strain behavior of elastomer foams investigated by various types of deformation[J]. Polymer, 2016, 83: 190-198. |
| 3 | Lan B, Li P Z, Yang Q, et al. Dynamic self generation of hydrogen bonding and relaxation of polymer chain segment in stabilizing thermoplastic polyurethane microcellular foams[J]. Materials Today Communications, 2020, 24: 101056. |
| 4 | Belmonte P, Ramos M J, Rodríguez J F, et al. Transformation of TPU elastomers into TPU foams using supercritical CO2. A new reprocessing approach[J]. The Journal of Supercritical Fluids, 2023, 192: 105806. |
| 5 | Yu C T, Lai C C, Wang F M, et al. Fabrication of thermoplastic polyurethane (TPU)/thermoplastic amide elastomer (TPAE) composite foams with supercritical carbon dioxide and their mechanical properties[J]. Journal of Manufacturing Processes, 2019, 48: 127-136. |
| 6 | Ge C B, Wang S P, Zheng W G, et al. Preparation of microcellular thermoplastic polyurethane (TPU) foam and its tensile property[J]. Polymer Engineering & Science, 2018, 58(S1): E158-E166. |
| 7 | Zhai Y, Yu Y F, Zhou K K, et al. Flexible and wearable carbon black/thermoplastic polyurethane foam with a pinnate-veined aligned porous structure for multifunctional piezoresistive sensors[J]. Chemical Engineering Journal, 2020, 382: 122985. |
| 8 | Belmonte P, Céspedes M, Ramos M J, et al. Foaming of thermoplastic polyurethane using supercritical CO2 and N2: antishrinking strategy[J]. The Journal of Supercritical Fluids, 2024, 211: 106311. |
| 9 | Lu Q W, Macosko C W. Comparing the compatibility of various functionalized polypropylenes with thermoplastic polyurethane (TPU)[J]. Polymer, 2004, 45(6): 1981-1991. |
| 10 | Xing S W, Lv C F, Lin M J, et al. A flexible superhydrophobic thermoplastic polyurethane porous surface with good self-cleaning function prepared by supercritical CO2 foaming[J]. The Journal of Supercritical Fluids, 2024, 210: 106294. |
| 11 | Fei Y P, Jiang R T, Fang W, et al. Highly sensitive large strain cellulose/multiwalled carbon nanotubes (MWCNTs)/thermoplastic polyurethane (TPU) nanocomposite foams: from design to performance evaluation[J]. The Journal of Supercritical Fluids, 2022, 188: 105653. |
| 12 | Koizumi M, Niino M. Overview of FGM research in Japan[J]. MRS Bulletin, 1995, 20(1): 19-21. |
| 13 | Shi H Y, Zhou P, Li J, et al. Functional gradient metallic biomaterials: techniques, current scenery, and future prospects in the biomedical field[J]. Frontiers in Bioengineering and Biotechnology, 2021, 8: 616845. |
| 14 | Liu Z Q, Meyers M A, Zhang Z F, et al. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications[J]. Progress in Materials Science, 2017, 88: 467-498. |
| 15 | Miao X G, Sun D. Graded/gradient porous biomaterials[J]. Materials, 2010, 3(1): 26-47. |
| 16 | Long L C, Wang Z K, Chen K. Analysis of the hollow structure with functionally gradient materials of moso bamboo[J]. Journal of Wood Science, 2015, 61(6): 569-577. |
| 17 | Frey M, Biffi G, Adobes-Vidal M, et al. Tunable wood by reversible interlocking and bioinspired mechanical gradients[J]. Advanced Science, 2019, 6(10): 1802190. |
| 18 | Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys[J]. Nature Reviews Materials, 2020, 5: 706-723. |
| 19 | Mao A R, Chen J W, Bu X C, et al. Bamboo-inspired structurally efficient materials with a large continuous gradient[J]. Small, 2023, 19(35): 2301144. |
| 20 | Gao X L, Chen Y C, Chen P, et al. Supercritical CO2 foaming and shrinkage resistance of thermoplastic polyurethane/modified magnesium borate whisker composite[J]. Journal of CO2 Utilization, 2022, 57: 101887. |
| 21 | Wang G L, Liu J X, Zhao J C, et al. Structure-gradient thermoplastic polyurethane foams with enhanced resilience derived by microcellular foaming[J]. The Journal of Supercritical Fluids, 2022, 188: 105667. |
| 22 | Mannella G A, Conoscenti G, Carfì Pavia F, et al. Preparation of polymeric foams with a pore size gradient via thermally induced phase separation (TIPS)[J]. Materials Letters, 2015, 160: 31-33. |
| 23 | Zhu L J, Wang G L, Xu Z R, et al. A new microcellular foaming strategy to develop structure-gradient thermoplastic polyurethane foams with enhanced elasticity[J]. Materials & Design, 2023, 234: 112325. |
| 24 | Zhou C C, Wang P, Li W. Fabrication of functionally graded porous polymer via supercritical CO2 foaming[J]. Composites Part B: Engineering, 2011, 42(2): 318-325. |
| 25 | Jiang J J, Zhou M N, Li Y Z, et al. Cell structure and hardness evolutions of TPU foamed sheets with high hardness via a temperature rising foaming process[J]. The Journal of Supercritical Fluids, 2022, 188: 105654. |
| 26 | Ngo M T, Dickmann J S, Hassler J C, et al. A new experimental system for combinatorial exploration of foaming of polymers in carbon dioxide: the gradient foaming of PMMA[J]. The Journal of Supercritical Fluids, 2016, 109: 1-19. |
| 27 | Wang W, Liao X, He Y S, et al. Thermoplastic polyurethane/polytetrafluoroethylene composite foams with enhanced mechanical properties and anti-shrinkage capability fabricated with supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2020, 163: 104861. |
| 28 | Zhang R, Huang K, Hu S F, et al. Improved cell morphology and reduced shrinkage ratio of ETPU beads by reactive blending[J]. Polymer Testing, 2017, 63: 38-46. |
| 29 | Nofar M, Batı B, Küçük E B, et al. Effect of soft segment molecular weight on the microcellular foaming behavior of TPU using supercritical CO2 [J]. The Journal of Supercritical Fluids, 2020, 160: 104816. |
| 30 | Chen Y C, Li D Y, Zhang H, et al. Antishrinking strategy of microcellular thermoplastic polyurethane by comprehensive modeling analysis[J]. Industrial & Engineering Chemistry Research, 2021, 60(19): 7155-7166. |
| 31 | Chen Y C, Zhong W Y, Jia X Y, et al. Microcellular thermoplastic polyurethane (TPU) with multimodal cell structure fabricated based on pressure swing strategy and its compressive mechanical properties[J]. Industrial & Engineering Chemistry Research, 2024, 63(19): 8833-8845. |
| 32 | Zhong W Y, Hu D D, Jia X Y, et al. A novel semi-continuous preparation mode of ultra-low density thermoplastic polyurethane foam[J]. Chemical Engineering Journal, 2024, 481: 148402. |
| 33 | Chu C C, Yeh S K, Peng S P, et al. Preparation of microporous thermoplastic polyurethane by low-temperature supercritical CO2 foaming[J]. Journal of Cellular Plastics, 2017, 53(2): 135-150. |
| 34 | Li R S, Lee J H, Wang C D, et al. Solubility and diffusivity of CO2 and N2 in TPU and their effects on cell nucleation in batch foaming[J]. The Journal of Supercritical Fluids, 2019, 154: 104623. |
| 35 | Sun F K, Zhou M H, Yi F F, et al. Facile fabrication of lightweight and high expanded TPU/PBS bead blend foam with segregated microcellular network for reduced shrinkage and enhanced interface bonding[J]. The Journal of Supercritical Fluids, 2024, 212: 106334. |
| 36 | Lee Y H, Lee C W, Chou C H, et al. Sustainable polyamide elastomers from a bio-based dimer diamine for fabricating highly expanded and facilely recyclable microcellular foams via supercritical CO2 foaming[J]. European Polymer Journal, 2021, 160: 110765. |
| 37 | Lu J W, Zhang H, Chen Y M, et al. Effect of chain relaxation on the shrinkage behavior of TPEE foams fabricated with supercritical CO2 [J]. Polymer, 2022, 256: 125262. |
| 38 | Chen Y C, Yu J B, Ling Y J, et al. Comprehensive analysis of mechanical properties of microcellular polypropylene: experiment and simulation[J]. Polymer Testing, 2022, 116: 107812. |
| [1] | Wenbao LI, Jinpeng HU, Miao DU, Pengju PAN, Guorong SHAN. High strength and toughness P(SBMA-co-AAc)/SiO2 composite hydrogel marine antifouling and drag-reducing coating [J]. CIESC Journal, 2025, 76(2): 787-796. |
| [2] | Zheng GONG, Xiulu GAO, Ling ZHAO, Dongdong HU. Preparation and shape memory properties of PBAT/PLA foams by supercritical CO2 [J]. CIESC Journal, 2025, 76(2): 888-896. |
| [3] | Zhengang ZHAO, Mengyao ZHOU, Dian JIN, Dacheng ZHANG. Study on direct methanol fuel cell performance modification based on foam carbon diffusion layer [J]. CIESC Journal, 2024, 75(S1): 259-266. |
| [4] | Hongbiao XU, Liang YANG, Zidong LI, Daoping LIU. Kinetics of methane hydrate formation in saline droplets/copper foam composite system [J]. CIESC Journal, 2024, 75(9): 3287-3296. |
| [5] | Yufei MAO, Fei CAO, Yanqin SHANGGUAN. Computing method for convection heat transfer of supercritical pressure fluid in turbulent pipe flow [J]. CIESC Journal, 2024, 75(8): 2821-2830. |
| [6] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
| [7] | Kang ZHOU, Jianxin WANG, Hai YU, Chaoliang WEI, Fengqi FAN, Xinhao CHE, Lei ZHANG. Foam rupture properties of mineral base oils based on molecular dynamics simulation [J]. CIESC Journal, 2024, 75(4): 1668-1678. |
| [8] | Rui SUN, Hua TIAN, Zirui WU, Xiaocun SUN, Gequn SHU. Study on the critical properties calculation models of CO2-based binary mixture working fluid [J]. CIESC Journal, 2024, 75(2): 439-449. |
| [9] | Yongtao WANG, Jianyong MAO, Baishan HU, Xinyu WANG, Jiaxin LIU, Jia YAO, Haoran LI. Progress in supercritical reactions and supercritical fluid participated reactions and their applications [J]. CIESC Journal, 2024, 75(11): 3973-3986. |
| [10] | Hailin JIA, Jinxiang ZENG, Rongkun PAN, Shili PAN, Kaixuan ZHOU. True fire experimental and molecular dynamic simulation of fluorine-free foam extinguishing agent [J]. CIESC Journal, 2024, 75(10): 3825-3834. |
| [11] | Zihou ZHU, Feng PAN, Pengfei ZHAO, Ying HE. Fluid-thermal coupling numerical study on effect of heater surface materials on nucleate boiling heat transfer [J]. CIESC Journal, 2024, 75(10): 3437-3451. |
| [12] | Zexin ZHANG, Weizhong ZHENG, Yisheng XU, Dongdong HU, Xinyu ZHUO, Yuan ZONG, Weizhen SUN, Ling ZHAO. Research progress of wafer cleaning and selective etching in supercritical carbon dioxide media [J]. CIESC Journal, 2024, 75(1): 110-119. |
| [13] | Jie LIU, Lisheng WU, Jinjin LI, Zhenghong LUO, Yinning ZHOU. Preparation and properties of polyether-based vinylogous urethane reversible crosslinked polymers [J]. CIESC Journal, 2023, 74(7): 3051-3057. |
| [14] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
| [15] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||