CIESC Journal ›› 2024, Vol. 75 ›› Issue (8): 2821-2830.DOI: 10.11949/0438-1157.20240140
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yufei MAO(), Fei CAO, Yanqin SHANGGUAN
Received:
2024-01-30
Revised:
2024-04-22
Online:
2024-08-21
Published:
2024-08-25
Contact:
Yufei MAO
通讯作者:
毛宇飞
作者简介:
毛宇飞(1979—),男,博士,副教授,yfmao@hhu.edu.cn
基金资助:
CLC Number:
Yufei MAO, Fei CAO, Yanqin SHANGGUAN. Computing method for convection heat transfer of supercritical pressure fluid in turbulent pipe flow[J]. CIESC Journal, 2024, 75(8): 2821-2830.
毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830.
1 | Brun K, Friedman P, Dennis R. Fundamentals and Applications of Supercritical Carbon Dioxide (sCO₂) Based Power Cycles[M]. Beijing: National Defense Industry Press, 2023: 1-27. |
2 | 石德智, 张金露, 胡春艳, 等. 超临界水氧化技术处理污泥的研究与应用进展[J]. 化工学报, 2017, 68(1): 37-49. |
Shi D Z, Zhang J L, Hu C Y, et al. Research and application progress of supercritical water oxidation technology on waste sludge treatment[J]. CIESC Journal, 2017, 68(1): 37-49. | |
3 | Pioro I L. Current status of research on heat transfer in forced convection of fluids at supercritical pressures[J]. Nuclear Engineering and Design, 2019, 354: 110207. |
4 | Mao S, Zhou T, Wei D, et al. Heat transfer characteristics of supercritical water in channels: a systematic literature review of 20 years of research[J]. Applied Thermal Engineering, 2021, 197: 117403. |
5 | Pioro I L, Khartabil H F, Duffey R B. Heat transfer to supercritical fluids flowing in channels—empirical correlations (survey)[J]. Nuclear Engineering and Design, 2004, 230(1/2/3): 69-91. |
6 | Jäger W, Sánchez Espinoza V H, Hurtado A. Review and proposal for heat transfer predictions at supercritical water conditions using existing correlations and experiments[J]. Nuclear Engineering and Design, 2011, 241(6): 2184-2203. |
7 | Xie J Z, Liu D C, Yan H B, et al. A review of heat transfer deterioration of supercritical carbon dioxide flowing in vertical tubes: heat transfer behaviors, identification methods, critical heat fluxes, and heat transfer correlations[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119233. |
8 | Ye Z L, Zendehboudi A, Hafner A, et al. General heat transfer correlations for supercritical carbon dioxide heated in vertical tubes for upward and downward flows[J]. International Journal of Refrigeration, 2022, 140: 57-69. |
9 | 周强泰. 浮力对立式管中超临界压力水的传热的影响[J]. 工程热物理学报, 1983, 4(2): 165-172. |
Zhou Q T. Influences of buoyancy on heat transfer to supercritical pressure water in vertical tubes[J]. Journal of Engineering Thermophysics, 1983, 4(2): 165-172. | |
10 | Cheng X, Yang Y H, Huang S F. A simplified method for heat transfer prediction of supercritical fluids in circular tubes[J]. Annals of Nuclear Energy, 2009, 36(8): 1120-1128. |
11 | Kim D E, Kim M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. |
12 | Bae Y Y. Mixed convection heat transfer to carbon dioxide flowing upward and downward in a vertical tube and an annular channel[J]. Nuclear Engineering and Design, 2011, 241(8): 3164-3177. |
13 | Jiang P X, Zhao C R, Liu B. Flow and heat transfer characteristics of R22 and ethanol at supercritical pressures[J]. The Journal of Supercritical Fluids, 2012, 70: 75-89. |
14 | 张思宇, 陈佳跃, 赵萌, 等. 超临界压力下竖直圆管内不同流体的传热特性[J]. 原子能科学技术, 2016, 50(8): 1395-1401. |
Zhang S Y, Chen J Y, Zhao M, et al. Heat transfer characteristics of different fluids in vertical tube under supercritical pressure[J]. Atomic Energy Science and Technology, 2016, 50(8): 1395-1401. | |
15 | Liu S H, Huang Y P, Liu G X, et al. Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes[J]. International Journal of Heat and Mass Transfer, 2017, 106: 1144-1156. |
16 | 刘光旭, 黄彦平, 王俊峰, 等. 浮升力效应和流动加速效应对超临界二氧化碳传热影响理论分析[J]. 核动力工程, 2018, 39(6): 34-38. |
Liu G X, Huang Y P, Wang J F, et al. Theoretical analysis of effect of buoyancy and flow acceleration on heat transfer of supercritical carbon dioxide[J]. Nuclear Power Engineering, 2018, 39(6): 34-38. | |
17 | 王彦红, 李素芬, 赵星海. 超临界压力下航空煤油传热恶化的分析与预测[J]. 化工学报, 2018, 69(12): 5056-5064. |
Wang Y H, Li S F, Zhao X H. Analysis and prediction of heat transfer deterioration of aviation kerosene under supercritical pressures[J]. CIESC Journal, 2018, 69(12): 5056-5064. | |
18 | Cui Y L, Wang H X. Experimental study on convection heat transfer of R134a at supercritical pressures in a vertical tube for upward and downward flows[J]. Applied Thermal Engineering, 2018, 129: 1414-1425. |
19 | 朱兵国, 吴新明, 张良, 等. 垂直上升管内超临界CO2流动传热特性研究[J]. 化工学报, 2019, 70(4): 1282-1290, 1661. |
Zhu B G, Wu X M, Zhang L, et al. Flow and heat transfer characteristics of supercritical CO2 in vertical tube[J]. CIESC Journal, 2019, 70(4): 1282-1290, 1661. | |
20 | 颜建国, 朱凤岭, 郭鹏程, 等. 高热流低流速条件下超临界CO2在小圆管内的对流传热特性[J]. 化工学报, 2019, 70(5): 1779-1787. |
Yan J G, Zhu F L, Guo P C, et al. Convective heat transfer of supercritical CO2 flowing a mini circular tube under high heat flux and low mass flux conditions[J]. CIESC Journal, 2019, 70(5): 1779-1787. | |
21 | Li F B, Bai B F. A model of heat transfer coefficient for supercritical water considering the effect of heat transfer deterioration[J]. International Journal of Heat and Mass Transfer, 2019, 133: 316-329. |
22 | Zhu B G, Xu J L, Yan C S, et al. The general supercritical heat transfer correlation for vertical up-flow tubes: K number correlation[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119080. |
23 | 张海松, 朱鑫杰, 朱兵国, 等. 浮升力和流动加速对超临界CO2管内流动传热影响[J]. 物理学报, 2020, 69(6): 126-135. |
Zhang H S, Zhu X J, Zhu B G, et al. Effects of buoyancy and acceleration on heat transfer of supercritical CO2 flowing in tubes[J]. Acta Physica Sinica, 2020, 69(6): 126-135. | |
24 | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
Hong R, Yuan B Q, Du W J. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube[J]. CIESC Journal, 2023, 74(8): 3309-3319. | |
25 | 过增元, 李志信. 热可压缩流体的流动和传热[J]. 工程热物理学报, 1995, 16(4): 456-460. |
Guo Z Y, Li Z X. Flow and heat transfer of thermally compressible fluids[J]. Journal of Engineering Thermophysics, 1995, 16(4): 456-460. | |
26 | Hiroaki T, Ayao T, Masaru H, et al. Effects of buoyancy and of acceleration owing to thermal expansion on forced turbulent convection in vertical circular tubes—criteria of the effects, velocity and temperature profiles, and reverse transition from turbulent to laminar flow[J]. International Journal of Heat and Mass Transfer, 1973, 16(6): 1267-1288. |
27 | Holman J P. Heat Transfer [M]. 10th ed. Boston: McGraw-Hill Higher Education Press, 2002: 282-283. |
28 | Pioro I L, Duffey R B, Dumouchel T J. Hydraulic resistance of fluids flowing in channels at supercritical pressures (survey)[J]. Nuclear Engineering and Design, 2004, 231(2): 187-197. |
29 | Zhu K, Xu G Q, Tao Z, et al. Flow frictional resistance characteristics of kerosene RP-3 in horizontal circular tube at supercritical pressure[J]. Experimental Thermal and Fluid Science, 2013, 44: 245-252. |
30 | Zhang H S, Xu J L, Zhu X J, et al. The K number, a new analogy criterion number to connect pressure drop and heat transfer of sCO2 in vertical tubes[J]. Applied Thermal Engineering, 2021, 182: 116078. |
31 | Yamagata K, Nishikawa K, Hasegawa S, et al. Forced convective heat transfer to supercritical water flowing in tubes[J]. International Journal of Heat and Mass Transfer, 1972, 15(12): 2575-2593. |
32 | Peng R F, Lei X L, Guo Z M, et al. Forced convective heat transfer of supercritical carbon dioxide in mini-channel under low mass fluxes[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121919. |
33 | Zhang G, Zhang H, Gu H Y, et al. Experimental and numerical investigation of turbulent convective heat transfer deterioration of supercritical water in vertical tube[J]. Nuclear Engineering and Design, 2012, 248: 226-237. |
[1] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[2] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[3] | Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel [J]. CIESC Journal, 2024, 75(8): 2831-2839. |
[4] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[5] | Qian LI, Rongmin ZHANG, Zijie LIN, Qi ZHAN, Weihua CAI. Prediction and simulation of flow and heat transfer for printed circuit plate heat exchanger based on machine learning [J]. CIESC Journal, 2024, 75(8): 2852-2864. |
[6] | Xiaofeng HUANG, Zhaohui LIU, Fan YANG. Experimental investigation of high-density hydrocarbon fuel JP-10 on flow heat transfer and pyrolysis characteristics [J]. CIESC Journal, 2024, 75(8): 2917-2928. |
[7] | Jinrui YANG, Hongfei ZHENG, Xinglong MA, Rihui JIN, Shen LIANG. Study on two-stage stacked humidification-dehumidification desalination device [J]. CIESC Journal, 2024, 75(7): 2446-2454. |
[8] | Qingjie YU, Honghai YANG, Yuhao LIU, Haizhou FANG, Weiqi HE, Jun WANG, Xincheng LU. Wavelet analysis and flow pattern identification in pulsating heat pipes based on temperature signals [J]. CIESC Journal, 2024, 75(7): 2497-2504. |
[9] | Xiaoping LUO, Yuntian HOU, Yijie FAN. Flow boiling heat transfer and temperature uniformity in micro-channel with countercurrent phase separation structure [J]. CIESC Journal, 2024, 75(7): 2474-2485. |
[10] | Xinze LI, Shuangxing ZHANG, Honghai YANG, Wenjing DU. Experimental study on performance of new type of pulsating heat pipe for battery cooling [J]. CIESC Journal, 2024, 75(6): 2222-2232. |
[11] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[12] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
[13] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[14] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
[15] | Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate [J]. CIESC Journal, 2024, 75(5): 1830-1842. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 107
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||