CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2638-2651.DOI: 10.11949/0438-1157.20241494
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jiacheng LOU1(
), Fucheng CHANG2, Yeming LIU1, Zhibin LI1, Xi LI1, Huixiong LI1(
)
Received:2024-12-24
Revised:2025-01-03
Online:2025-07-09
Published:2025-06-25
Contact:
Huixiong LI
娄嘉诚1(
), 常福城2, 刘也铭1, 李志斌1, 李熙1, 李会雄1(
)
通讯作者:
李会雄
作者简介:娄嘉诚(2000—),男,博士研究生,3121103075@stu.xjtu.edu.cn
基金资助:CLC Number:
Jiacheng LOU, Fucheng CHANG, Yeming LIU, Zhibin LI, Xi LI, Huixiong LI. Modeling and simulation study on transient response characteristics of water wall in 1000 MW ultra-supercritical once-through boiler[J]. CIESC Journal, 2025, 76(6): 2638-2651.
娄嘉诚, 常福城, 刘也铭, 李志斌, 李熙, 李会雄. 1000 MW超超临界直流锅炉水冷壁瞬态响应特性的建模与仿真研究[J]. 化工学报, 2025, 76(6): 2638-2651.
Add to citation manager EndNote|Ris|BibTeX
| 年份 | 作者 | 计算研究对象 | 使用的模型 | 模型的不足 |
|---|---|---|---|---|
| 1989 | 王广军等[ | HG-670/140锅炉 | 集总参数模型 | 无法实现全工况实时仿真 |
| 1993 | 吕子安等[ | 受热单管 | 集总参数模型 | 无法实现全工况实时仿真 |
| 2003 | 任挺进等[ | 某锅炉 | 链式结构集总参数模型 | 无法实现全工况实时仿真 |
| 2010 | 王志刚等[ | 600 MW超临界直流锅炉 | 集总参数模型 | 无法实现全工况实时仿真 |
| 2014 | 史一涛[ | 660 MW超临界直流锅炉 | 集总参数模型 | 模型不符合实际情况的假设偏多 |
| 1998 | 范永胜等[ | 600 MW超临界直流锅炉 | 移动边界模型 | 模型切换时采用静态近似法导致误差增大 |
| 2001 | 王伟等[ | 某超临界直流锅炉 | 移动边界模型 | 模型切换时采用静态近似法导致误差增大 |
| 2012 | 黄永和[ | 600 MW超临界直流锅炉 | 移动边界模型 | 模型切换时采用静态近似法导致误差增大 |
| 2014 | Hou等[ | 1000 MW超超临界直流锅炉 | 移动边界模型 | 模型只能计算出特定条件下热参数的主要趋势 |
| 2018 | 康英伟等[ | 660 MW超临界直流锅炉 | 移动边界模型 | 模型切换时采用静态近似法导致误差增大 |
Table 1 Summary of research status on transient response characteristics models of boilers
| 年份 | 作者 | 计算研究对象 | 使用的模型 | 模型的不足 |
|---|---|---|---|---|
| 1989 | 王广军等[ | HG-670/140锅炉 | 集总参数模型 | 无法实现全工况实时仿真 |
| 1993 | 吕子安等[ | 受热单管 | 集总参数模型 | 无法实现全工况实时仿真 |
| 2003 | 任挺进等[ | 某锅炉 | 链式结构集总参数模型 | 无法实现全工况实时仿真 |
| 2010 | 王志刚等[ | 600 MW超临界直流锅炉 | 集总参数模型 | 无法实现全工况实时仿真 |
| 2014 | 史一涛[ | 660 MW超临界直流锅炉 | 集总参数模型 | 模型不符合实际情况的假设偏多 |
| 1998 | 范永胜等[ | 600 MW超临界直流锅炉 | 移动边界模型 | 模型切换时采用静态近似法导致误差增大 |
| 2001 | 王伟等[ | 某超临界直流锅炉 | 移动边界模型 | 模型切换时采用静态近似法导致误差增大 |
| 2012 | 黄永和[ | 600 MW超临界直流锅炉 | 移动边界模型 | 模型切换时采用静态近似法导致误差增大 |
| 2014 | Hou等[ | 1000 MW超超临界直流锅炉 | 移动边界模型 | 模型只能计算出特定条件下热参数的主要趋势 |
| 2018 | 康英伟等[ | 660 MW超临界直流锅炉 | 移动边界模型 | 模型切换时采用静态近似法导致误差增大 |
| 负荷工况 | 工作压力/MPa | 质量流速/(t·h-1) | 进口温度/℃ |
|---|---|---|---|
| 100% BMCR | 27.62 | 2980 | 325 |
| 75% BMCR | 25.01 | 1953 | 297 |
| 30% BMCR | 12.29 | 885 | 266 |
Table 2 Operating parameters of water-cooled wall
| 负荷工况 | 工作压力/MPa | 质量流速/(t·h-1) | 进口温度/℃ |
|---|---|---|---|
| 100% BMCR | 27.62 | 2980 | 325 |
| 75% BMCR | 25.01 | 1953 | 297 |
| 30% BMCR | 12.29 | 885 | 266 |
Fig.10 Response process of outlet working fluid temperature and pipe wall temperature after step change of disturbance parameters under 30% and 75% BMCR loads
| [12] | Xu W T, Huang Y J, Song S H, et al. A new on-line combustion optimization approach for ultra-supercritical coal-fired boiler to improve boiler efficiency, reduce NO x emission and enhance operating safety[J]. Energy, 2023, 282: 128748. |
| [13] | Yang C, Zhang T, Sun L, et al. Piecewise affine model identification and predictive control for ultra-supercritical circulating fluidized bed boiler unit[J]. Computers & Chemical Engineering, 2023, 174: 108257. |
| [14] | 崔凝, 王兵树, 高建强, 等. 大容量余热锅炉动态模型的研究与应用[J]. 中国电机工程学报, 2006, 26(19): 103-109. |
| Cui N, Wang B S, Gao J Q, et al. Study and application on an dynamic model for the large capacity heat recovery steam generator[J]. Proceedings of the CSEE, 2006, 26(19): 103-109. | |
| [15] | 殷素芳, 王广军. 直流锅炉蒸汽发生器的模块化建模与仿真[J]. 计算机仿真, 2009, 26(4): 271-274. |
| Yin S F, Wang G J. Modular modeling and simulation of once-through boiler steam generator[J]. Computer Simulation, 2009, 26(4): 271-274. | |
| [16] | 王亚欧, 陶谦, 陈波, 等. 自然循环双压燃气轮机余热锅炉动态特性分析[J]. 中国电力, 2018, 51(2): 176-184. |
| Wang Y O, Tao Q, Chen B, et al. Dynamic characteristics analysis on a dual-pressure natural-circulation gas turbine heat recovery steam generator[J]. Electric Power, 2018, 51(2): 176-184. | |
| [17] | 章臣樾. 锅炉动态特性及其数学模型[M]. 北京: 水利电力出版社, 1987. |
| Zhang C Y. Dynamic Characteristics of Boiler and Its Mathematical Model[M]. Beijing: Water Resources and Electric Power Press, 1987. | |
| [18] | 王广军, 章臣樾. 锅炉动态过程能量方程的修正及受热面的当量金属质量[J]. 电力技术, 1989, 22(4): 1-3, 49. |
| Wang G J, Zhang C Y. Modification of energy equation of boiler dynamic process and equivalent metal mass of heating surface[J]. Electric Power, 1989, 22(4): 1-3, 49. | |
| [19] | 吕子安, 李天铎. 单相介质受热管集中参数模型建模方法的改进[J]. 系统仿真学报, 1993, 5(1): 1-8, 14. |
| Lyu Z A, Li T D. The improued lumped-parameter model of monophase fluid heated tubes[J]. Acta Simulata Systematica Sinica, 1993, 5(1): 1-8, 14. | |
| [20] | 任挺进, 谢茂清, 李志刚, 等. 锅炉单相受热面链式建模新方法[J]. 中国电机工程学报, 2003, 23(3): 175-178. |
| Ren T J, Xie M Q, Li Z G, et al. A new method of chain structure medeling on boiler's single-phase heat-exchanger[J]. Proceedings of the CSEE, 2003, 23(3): 175-178. | |
| [21] | 王志刚, 雷兆团, 张广才. 超临界600 MW机组直流锅炉动态特性研究[J]. 热力发电, 2010, 39(9): 14-20. |
| Wang Z G, Lei Z T, Zhang G C. Study on dynamic behavior of once-through boiler euipped for supercritical 600 MW unit[J]. Thermal Power Generation, 2010, 39(9): 14-20. | |
| [22] | 史一涛. 660 MW超临界直流机组动态特性仿真研究[D]. 北京: 华北电力大学, 2014. |
| Shi Y T. Simulation study on dynamic characteristics of 660 MW supercritical DC unit[D]. Beijing: North China Electric Power University, 2014. | |
| [23] | 范永胜, 徐治皋, 陈来九. 超临界直流锅炉蒸汽发生器的建模与仿真研究(一)[J]. 中国电机工程学报, 1998, 18(4): 246-253. |
| Fan Y S, Xu Z G, Chen L J. Modeling and simulation of steam generator in supercritical once-through boiler (1)[J]. Proceedings of the CSEE, 1998, 18(4): 246-253. | |
| [24] | 王伟, 任挺进, 高琪瑞, 等. 直流锅炉蒸发区域的数学模型及其仿真[J]. 清华大学学报(自然科学版), 2001, 41(10): 105-108. |
| Wang W, Ren T J, Gao Q R, et al. Mathematical model and simulation of the evaporating surface in a once-through boiler[J]. Journal of Tsinghua University (Science and Technology), 2001, 41(10): 105-108. | |
| [25] | 黄永和. 600 MW超临界直流锅炉水冷壁系统建模与仿真[D]. 重庆: 重庆大学, 2012. |
| [1] | Deng B Y, Zhang M, Wei G H, et al. Analysis and referential significance of a breakdown accident of the main feed water pump in a 350 MW supercritical CFB boiler[J]. Journal of Thermal Science, 2023, 32(5): 1797-1806. |
| [2] | Du J J, Li Y L, Zhao Y G, et al. Numerical study of supercritical opposed wall-fired boiler furnace temperature and high-temperature heating surface stress under variable load operation[J]. Energies, 2024, 17(3): 663. |
| [3] | Du X C, Song Y Y, Xiang Y X, et al. Numerical investigation on the heat transfer characteristics of supercritical water in a non-uniformly heated tube for a supercritical CFB boiler[J]. Journal of Thermal Science, 2023, 32(5): 1807-1818. |
| [4] | Liu K R, Wang C, Wang L M, et al. Dynamic performance analysis and control strategy optimization for supercritical coal-fired boiler: a dynamic simulation[J]. Energy, 2023, 282: 128712. |
| [5] | 李炳楠, 朱峰, 燕志伟, 等. 超临界火电机组协调系统建模及模型预测控制算法研究[J]. 热能动力工程, 2020, 35(2): 117-125. |
| Li B N, Zhu F, Yan Z W, et al. Research on modeling and model predictive control algorithm for supercritical thermal power unit coordination system[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(2): 117-125. | |
| [6] | 陈听宽. 超临界与超超临界锅炉技术的发展与研究[J]. 世界科技研究与发展, 2005, 27(6): 42-48. |
| Chen T K. Development and research on supercritical and ultra-supercritical boiler technology[J]. World Sci-tech R & D, 2005, 27(6): 42-48. | |
| [7] | 吴鹏举, 朱超, 万李, 等. 超临界机组锅炉20%负荷深度调峰水动力实炉试验研究[J]. 热力发电, 2021, 50(4): 59-66. |
| Wu P J, Zhu C, Wan L, et al. Actual furnace test research on hydrodynamics of a supercritical boiler at 20% deep peak load[J]. Thermal Power Generation, 2021, 50(4): 59-66. | |
| [8] | 赵子东, 阎维平. 超临界蒸汽参数卧式余热锅炉概念设计与分析[J]. 动力工程学报, 2018, 38(7): 513-518, 530. |
| Zhao Z D, Yan W P. Conceptual design and thermal analysis of a horizontal HRSG under supercritical steam conditions[J]. Journal of Chinese Society of Power Engineering, 2018, 38(7): 513-518, 530. | |
| [9] | 陈听宽. 超临界锅炉技术的发展[J]. 电力设备, 2002(3): 19-24. |
| Chen T K. Development of supercritical boiler technology[J]. Electrical Equipment, 2002(3): 19-24. | |
| [10] | Wang X S, Yang C, Zhang Z L. Online tracking simulation system of a 660 MW ultra-supercritical circulating fluidized bed boiler[J]. Journal of Thermal Science, 2023, 32(5): 1819-1831. |
| [11] | Wang Z, Yao G J, Xue W Y, et al. A data-driven approach for the ultra-supercritical boiler combustion optimization considering ambient temperature variation: a case study in China[J]. Processes, 2023, 11(10): 2889. |
| [25] | Huang Y H. Modeling and simulation of water cooling system for 600 MW supercritical once-through boiler[D]. Chongqing: Chongqing University, 2012. |
| [26] | Hou G L, Huang F R, Sun T Y, et al. Mathematical model for ultra-supercritical unit by physical principles[C]//2014 9th IEEE Conference on Industrial Electronics and Applications. Hangzhou, China: IEEE, 2014: 781-786. |
| [27] | 康英伟, 李月, 郑鹏远, 等. 660 MW超超临界直流锅炉水冷壁系统动态特性仿真[J]. 热能动力工程, 2018, 33(10): 52-59. |
| Kang Y W, Li Y, Zheng P Y, et al. Dynamic characteristics simulation of the water wall system of a 660 MW ultra-supercritical one-through boiler[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(10): 52-59. | |
| [28] | Ma X F, Jiang P X, Zhu Y H. Dynamic simulation model with virtual interfaces of supercritical working fluid heat exchanger based on moving boundary method[J]. Energy, 2022, 254: 124334. |
| [29] | Giovannini M, Lorenzini M. Switching criteria analysis for a condenser moving boundary model[J]. Journal of Physics: Conference Series, 2024, 2685(1): 012040. |
| [30] | Bürger R, Careaga J, Diehl S, et al. A moving-boundary model of reactive settling in wastewater treatment(Part 2): Numerical scheme[J]. Applied Mathematical Modelling, 2022, 111: 247-269. |
| [31] | Jiao X R, Jiang S, Liu H. Nonlinear moving boundary model of low-permeability reservoir[J]. Energies, 2021, 14(24): 8445. |
| [32] | Šulc S, Šmilauer V, Wald F. Thermal model for timber fire exposure with moving boundary[J]. Materials, 2021, 14(3): 574. |
| [33] | van der Velden T, Ritzert S, Reese S, et al. Modeling the moving boundary value problem of electrochemical machining[J]. PAMM, 2023, 22(1): e202200147. |
| [34] | 王宗琪, 王陶, 王建蒙, 等. 直流锅炉蒸发区域一种新的建模方法[J]. 系统仿真学报, 1998, 10(2): 19-24. |
| Wang Z Q, Wang T, Wang J M, et al. A new method for modeling evaporation zone of once through boiler[J]. Journal of System Simulation, 1998, 10(2): 19-24. | |
| [35] | 解衡, 张金玲, 贾斗南, 等. 直管式直流蒸汽发生器的热工水力特性分析与计算[J]. 核科学与工程, 1997, 17(2): 97-102. |
| Xie H, Zhang J L, Jia D N, et al. Analysis and calculation of thermal and hydraulic characteristics of straight tube once-through steam generator[J]. Nuclear Science and Engineering, 1997, 17(2): 97-102. | |
| [36] | Wang H, Bi Q C, Wu G, et al. Experimental investigation on pressure drop of supercritical water in an annular channel[J]. The Journal of Supercritical Fluids, 2018, 131: 47-57. |
| [37] | 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001. |
| Tao W Q. Numerical Heat Transfer[M]. 2nd ed. Xi'an: Xi'an Jiaotong University Press, 2001. | |
| [38] | 黄锦涛. 600 MW超临界直接锅炉螺旋管圈水冷壁动态过程特性及敏感性研究[D]. 西安: 西安交通大学, 1999. |
| Huang J T. Study on dynamic process characteristics and sensitivity of spiral coil water wall of 600 MW supercritical direct boiler[D]. Xi'an: Xi'an Jiaotong University, 1999. |
| [1] | Xiaoguang MI, Guogang SUN, Hao CHENG, Xiaohui ZHANG. Performance simulation model and validation of printed circuit natural gas cooler [J]. CIESC Journal, 2025, 76(S1): 426-434. |
| [2] | Hao HUANG, Wen WANG, Peiyun LI. Research on properties of wankel expanders under series connection [J]. CIESC Journal, 2025, 76(S1): 435-443. |
| [3] | Wenfeng ZHANG, Wei GUO, Xinyu ZHANG, Haomin CAO, Guoliang DING. Model development and software implementation of the aluminum tube and aluminum fin heat exchanger [J]. CIESC Journal, 2025, 76(S1): 84-92. |
| [4] |
Jichao GUO, Xiaoxiao XU, Yunlong SUN.
Airflow simulation and optimization based on |
| [5] | Aihua MA, Shuai ZHAO, Lin WANG, Minghui CHANG. Research on dynamic simulation methods for solar-powered absorption refrigeration cycles [J]. CIESC Journal, 2025, 76(S1): 318-325. |
| [6] | Chengyun WU, Haoran SUN. Performance simulation and fuel penalty investigation of civil aircraft air conditioning systems [J]. CIESC Journal, 2025, 76(S1): 351-359. |
| [7] | Wei LI, Hao CHEN, Gang KE, Xiaosheng HUANG, Chengjiao LI, Hang GUO, Fang YE. Simulation of the fresh air system in the simulation platform of the high-altitude environmental adaptability laboratory [J]. CIESC Journal, 2025, 76(S1): 360-369. |
| [8] | Xin XIAO, Geng YANG, Yunfeng WANG. Simulation of solar heat pump system integration of cascade latent heat thermal energy storage based on TRNSYS [J]. CIESC Journal, 2025, 76(S1): 393-400. |
| [9] | Hao LIU, Lin WANG, Hao DING, Jiayi GENG. Vapor-liquid equilibrium study of R1150+R1234ze(E) binary system at 223.15—253.15 K [J]. CIESC Journal, 2025, 76(S1): 1-8. |
| [10] | Hanchuan ZHANG, Chao SHANG, Wenxiang LYU, Dexiang HUANG, Yaning ZHANG. Operating conditions pattern recognition and yield prediction for FCCU based on unsupervised time series clustering [J]. CIESC Journal, 2025, 76(6): 2781-2790. |
| [11] | Haohao ZHANG, Li GUO, Xinyi LI, Jinyi CHEN, Chao HUA, Ping LU. Research progress on optimal design and dynamic control of dividing wall column [J]. CIESC Journal, 2025, 76(6): 2434-2450. |
| [12] | Wenliang LI, Cheng JI, Chen LIANG, Sichen WU, Shilin CHEN, Wei SUN, Chi ZHAI. On-line soft measurement of penicillin concentration based on TDMN [J]. CIESC Journal, 2025, 76(6): 2848-2858. |
| [13] | Lina ZHU, Maodong MIAO, Sai JIN, Zhonggai ZHAO, Fuxin SUN, Guiyang SHI, Fei LIU. Optimal control for neutralization process of citric acid through tricalcium reaction based on reinforcement learning algorithm [J]. CIESC Journal, 2025, 76(6): 2838-2847. |
| [14] | Yiyun ZHANG, Hengzhi CHEN, Yang LI, Chang'an MU, Quanhai WANG. Effects of turbulence on radial gas diffusion in binary particle fluidized bed [J]. CIESC Journal, 2025, 76(6): 2559-2568. |
| [15] | Min XIONG, Dongmei LIU, Zhichao WANG, Li ZHOU, Xu JI. Optimization and adjustment of operating parameters for green ammonia production under variable load conditions [J]. CIESC Journal, 2025, 76(6): 2791-2801. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||