CIESC Journal ›› 2025, Vol. 76 ›› Issue (S1): 384-392.DOI: 10.11949/0438-1157.20241092
• Energy and environmental engineering • Previous Articles
Jianyong MAO1(
), Jijun GE2, Pan XU3(
), Rongshan BI3(
)
Received:2024-09-29
Revised:2024-12-15
Online:2025-06-26
Published:2025-06-25
Contact:
Pan XU, Rongshan BI
通讯作者:
徐盼,毕荣山
作者简介:毛建拥(1981—),男,博士,m.jianyong@cnhu.com
基金资助:CLC Number:
Jianyong MAO, Jijun GE, Pan XU, Rongshan BI. Experimental study on the formation mechanism of hydrolyzed chlorine as a by-product during HDI preparation[J]. CIESC Journal, 2025, 76(S1): 384-392.
毛建拥, 葛纪军, 徐盼, 毕荣山. HDI制备过程中副产物水解氯生成机理实验研究[J]. 化工学报, 2025, 76(S1): 384-392.
Add to citation manager EndNote|Ris|BibTeX
| 分子式 | 化学名称 | CAS号 | 供应商 | 纯度/% (质量分数) |
|---|---|---|---|---|
| C6H16N2 | 己二胺 | 124-09-4 | 英威达尼龙化工(中国)有限公司 | 99.90 |
| CH4O | 甲醇 | 67-56-1 | — | 99.80 |
| C3H6O | 丙酮 | 67-64-1 | — | 99.80 |
| N2 | 氮气 | 7727-37-9 | — | — |
| AgNO3 | 硝酸银 | 7761-88-8 | — | 99.80 |
| NaCl | 氯化钠 | 7647-14-5 | — | 99.80 |
| COCl2 | 光气 | 75-44-5 | 山东新和成股份有限公司 | — |
Table 1 Sources and purities of experimental materials
| 分子式 | 化学名称 | CAS号 | 供应商 | 纯度/% (质量分数) |
|---|---|---|---|---|
| C6H16N2 | 己二胺 | 124-09-4 | 英威达尼龙化工(中国)有限公司 | 99.90 |
| CH4O | 甲醇 | 67-56-1 | — | 99.80 |
| C3H6O | 丙酮 | 67-64-1 | — | 99.80 |
| N2 | 氮气 | 7727-37-9 | — | — |
| AgNO3 | 硝酸银 | 7761-88-8 | — | 99.80 |
| NaCl | 氯化钠 | 7647-14-5 | — | 99.80 |
| COCl2 | 光气 | 75-44-5 | 山东新和成股份有限公司 | — |
Fig.3 The gas chromatograms of the products after the reaction of amine solution in normal heating (a), heating in air (b) and deoxygenation heating (c) were obtained respectively
| 1 | 刘士民, 王培学, 邓友全. 非光气制异氰酸酯绿色过程[J]. 中国科学: 化学, 2020, 50(2): 235-244. |
| Liu S M, Wang P X, Deng Y Q. Green non-phosgene process for manufacturing isocyanates[J]. Scientia Sinica Chimica, 2020, 50(2): 235-244. | |
| 2 | Lenzi V, Crema A, Pyrlin S, et al. Current state and perspectives of simulation and modeling of aliphatic isocyanates and polyisocyanates[J]. Polymers, 2022, 14(9): 1642. |
| 3 | 张曼, 周静, 张亚芳, 等. 聚氨酯中肟封闭芳香族异氰酸酯单体的液相色谱分析[J]. 聚氨酯工业, 2019, 34(4): 42-44. |
| Zhang M, Zhou J, Zhang Y F, et al. Liquid chromatography analysis of oxime-blocked aromatic isocyanate in polyurethane[J]. Polyurethane Industry, 2019, 34(4): 42-44. | |
| 4 | Cao Y, Li H Q, Qin N B, et al. Kinetics of the decomposition of dimethylhexane-1, 6-dicarbamate to 1, 6-hexamethylene diisocyanate[J]. Chinese Journal of Chemical Engineering, 2015, 23(5): 775-779. |
| 5 | Braun H. Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI)[J]. Industrial Arene Chemistry: Markets, Technologies, Sustainable Processes and Cases Studies of Aromatic Commodities, 2023, 3: 1525-1574. |
| 6 | 宋春梅, 薛海丽, 庄小璐, 等. 异佛尔酮二异氰酸酯自聚产物的13C-NMR研究[J]. 高分子学报, 2006, 37(5): 660-665. |
| Song C M, Xue H L, Zhuang X L, et al. The 13C-NMR analysis of polyisocyanurate made from isophorone diisocyanate[J]. Acta Polymerica Sinica, 2006, 37(5): 660-665. | |
| 7 | Wang X, Yang X, Zheng S Q. Thermal behaviors and kinetic analysis of dicyclohexylmethane-4, 4'-diisocyanate (HMDI)[J]. Thermochimica Acta, 2024, 733: 179676. |
| 8 | Wang H R, Cao L, Wang X L, et al. Effects of isocyanate structure on the properties of polyurethane: synthesis, performance, and self-healing characteristics[J]. Polymers, 2024, 16(21): 3045. |
| 9 | Rother D, Schlüter U. Occupational exposure to diisocyanates in the European union[J]. Annals of Work Exposures and Health, 2021, 65(8): 893-907. |
| 10 | Mouren A, Avérous L. Sustainable cycloaliphatic polyurethanes: from synthesis to applications[J]. Chemical Society Reviews, 2023, 52(1): 277-317. |
| 11 | Galbis J A, de Gracia García-Martín M, Violante de Paz M, et al. Synthetic polymers from sugar-based monomers[J]. Chemical Reviews, 2016, 116(3): 1600-1636. |
| 12 | Bi R S, Yan K J, Yang H X, et al. Simulation and optimization of the thermally coupled reactive distillation column for producing toluene diisocynate[J]. AIChE Journal, 2023, 69(1): e17648. |
| 13 | 马德强, 丁建生, 宋锦宏. 有机异氰酸酯生产技术进展[J]. 化工进展, 2007, 26(5): 668-673. |
| Ma D Q, Ding J S, Song J H. Progress in the production of organic isocyanates[J]. Chemical Industry and Engineering Progress, 2007, 26(5): 668-673. | |
| 14 | Hou Z T, Chen H F, Mao J Y, et al. Novel atomization-assisted phosgenation for TDI synthesis from TDA: a theoretical study on single droplet reactivity[J]. Chemical Engineering Science, 2023, 280: 119018. |
| 15 | Waibel K A, Nickisch R, Möhl N, et al. A more sustainable and highly practicable synthesis of aliphatic isocyanides[J]. Green Chemistry, 2020, 22(3): 933-941. |
| 16 | Bi R S, Yang H X, Yan K J, et al. Synthesis of sustainable production chains for phosgene-related byproducts[J]. Journal of Cleaner Production, 2022, 374: 133979. |
| 17 | Wen F, Hu M, Li Y, et al. The production of methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) at Wanhua Chemical Group (case study)[J]. Industrial Arene Chemistry: Markets, Technologies, Sustainable Processes and Cases Studies of Aromatic Commodities, 2023, 3: 1575-1609. |
| 18 | Oenema J, Liu H R, De Coensel N, et al. Review on the pyrolysis products and thermal decomposition mechanisms of polyurethanes[J]. Journal of Analytical and Applied Pyrolysis, 2022, 168: 105723. |
| 19 | 谭伟民, 王黎, 狄志刚, 等. 生物基五亚甲基二异氰酸酯(PDI)三聚体的制备及性能研究[J]. 涂料工业, 2020, 50(11): 38-44. |
| Tan W M, Wang L, Di Z G, et al. Preparation and properties of bio-based pentamethylene diisocyanate(PDI)trimer[J]. Paint & Coatings Industry, 2020, 50(11): 38-44. | |
| 20 | 周玲, 张建伟, 盛振晗, 等. TDI内在质量对其应用的影响[J]. 聚氨酯工业, 2016, 31(5): 44-46. |
| Zhou L, Zhang J W, Sheng Z H, et al. The influence of TDI quality on its application[J]. Polyurethane Industry, 2016, 31(5): 44-46. | |
| 21 | 袁纪武. MDI精馏精制和降低水解氯的研究[D]. 青岛: 青岛化工学院, 1999. |
| Yuan J W. Study on refining and reducing hydrolyzed chlorine by MDI distillation[D]. Qingdao: Qingdao Institute of Chemical Technology, 1999. | |
| 22 | 池俊杰, 贾利亚, 李晓峰, 等. 降低异氰酸酯水解氯含量的研究进展[J]. 化学推进剂与高分子材料, 2022, 20(1): 25-31. |
| Chi J J, Jia L Y, Li X F, et al. Research progress in reducing hydrolyzable chlorine content in isocyanates[J]. Chemical Propellants & Polymeric Materials, 2022, 20(1): 25-31. | |
| 23 | Albini A, Fagnoni M. Photochemically-generated Intermediates in Synthesis[M]. New York: John Wiley&Sons, 2013. |
| 24 | 俞勇, 崔学磊, 郭耀允, 等. 一种多异氰酸酯组合物及其制备方法和应用: 112592457A[P]. 2021-04-02. |
| Yu Y, Cui X L, Guo Y Y, et al. Preparation and application of a polyisocyanate composition: 112592457A[P]. 2021-04-02. | |
| 25 | 王文博, 张宏科, 姚雨, 等. 一种制备无色或浅色多异氰酸酯的方法: 106554293A[P]. 2017-04-05. |
| Wang W B, Zhang H K, Yao Y, et al. A method for preparing colorless or light-colored Isocyanate: 106554293A[P]. 2017-04-05. | |
| 26 | 俞勇, 尚永华, 李建峰, 等. 光化反应制备多异氰酸酯的方法以及制备水性聚氨酯树脂的方法: 110511163A[P]. 2019-11-29. |
| Yu Y, Shang Y H, Li J F, et al. Method for preparing polyisocyanate by photochemical reaction and waterborne polyurethane resin: 110511163A[P]. 2019-11-29. | |
| 27 | 郑世清, 谭心舜, 谈明传, 等. MDI同分异构体及水解氯分离的研究(Ⅰ)实验研究[J]. 青岛化工学院学报(自然科学版), 2001, 22(1): 24-26. |
| Zheng S Q, Tan X S, Tan M C, et al. The separation process of MDI isomer and hydrolysis (Ⅰ): The experiment study[J]. Journal of Qingdao Institute of Chemical Technology, 2001, 22(1): 24-26. | |
| 28 | 道森, 罗恩康, 纳夫滋格, 等. 降低甲苯二异氰酸酯中可水解氯化物含量的方法: 1064074A[P]. 1992-09-02. |
| Dawson R D, Roancon S B, Navtzger J L, et al. Methods for reducing the hydrolyzable chloride content of toluene diisocyanate: 1064074A[P]. 1992-09-02. | |
| 29 | 张宏民, 吴雪峰, 张宏科, 等. 一种脱氯剂及其制备方法与降低异氰酸酯氯含量和色度的应用: CN112430295A[P]. 2021-03-02. |
| Zhang H M, Wu X F, Zhang H K, et al. Preparation of dechlorination agent and its application in reducing chlorine content and colority of isocyanate: 112430295A[P]. 2021-03-02. | |
| 30 | 李同和, 尚永华, 蒙萌, 等. 一种气相法制备低水解氯含量异氰酸酯的方法: 112824376A[P]. 2021-05-21. |
| Li T H, Shang Y H, Meng M, et al. Method for preparing isocyanate with low hydrolytic chlorine content by gas phase method: 112824376A[P]. 2021-05-21. |
| [1] | Qingtai CAO, Songyuan GUO, Jianqiang LI, Zan JIANG, Bin WANG, Rui ZHUAN, Jingyi WU, Guang YANG. Numerical study on influence of perforated plate on retention performance of liquid oxygen tank under negative gravity [J]. CIESC Journal, 2025, 76(S1): 217-229. |
| [2] | Pengfei ZHAO, Ruomei QI, Xinfeng GUO, Hu FANG, Lufei XU, Xiao LI, Jin LIN. Analysis of hydrogen-to-oxygen impurities in a 1000 m3/h alkaline water electrolysis system [J]. CIESC Journal, 2025, 76(4): 1765-1778. |
| [3] | Xiaohang ZHONG, Wei XU, Wen ZHANG, Li XU, Yuxin WANG. A critical review on the effects of Fe impurity on H2 production via alkaline water electrolysis [J]. CIESC Journal, 2025, 76(2): 519-531. |
| [4] | Siwen ZHANG, Haiming GU, Shanhui ZHAO. Molecular mechanism study on chemical looping gasification of cellulose over iron oxide nanocluster [J]. CIESC Journal, 2025, 76(1): 363-373. |
| [5] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
| [6] | Yong DING, Wenjian LI, Zhaoyu CHEN, Lihui CAO, Xuanming LIU, Qiangqiang REN, Song HU, Jun XIANG. Aerobic pyrolysis kinetic and product characteristics of waste crystalline silicon photovo ltaic modules’ EVA [J]. CIESC Journal, 2024, 75(9): 3310-3319. |
| [7] | Jialei CAO, Liyan SUN, Dewang ZENG, Fan YIN, Zixiang GAO, Rui XIAO. Numerical simulation of chemical looping hydrogen generation with dual fluidized bed reactors [J]. CIESC Journal, 2024, 75(8): 2865-2874. |
| [8] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
| [9] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
| [10] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
| [11] | Guimei CHEN, Yuyun XIE, Youwei YANG, Yan GAO, Chunying WANG. Degradation of rhodamine B by peroxymonosulfate activated by Prussian blue analogue derivatives [J]. CIESC Journal, 2024, 75(10): 3804-3814. |
| [12] | Jialin ZHANG, Dawei XU, Yue GAO, Xingang LI. Performance of soot combustion over CeO2 modified CuO catalysts supported on nickel foams [J]. CIESC Journal, 2024, 75(1): 312-321. |
| [13] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
| [14] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
| [15] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||