CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2678-2686.DOI: 10.11949/0438-1157.20241443
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Bolong LI2(
), Yuxi JIANG1, Aotian REN1, Wenqi QIN1, Jie FU1,2, Xiuyang LYU1(
)
Received:2024-12-13
Revised:2025-01-23
Online:2025-07-09
Published:2025-06-25
Contact:
Xiuyang LYU
李愽龙2(
), 蒋雨希1, 任傲天1, 秦雯琪1, 傅杰1,2, 吕秀阳1(
)
通讯作者:
吕秀阳
作者简介:李愽龙(1991—),男,博士,副研究员,bolongli@zju-qz.edu.cn
基金资助:CLC Number:
Bolong LI, Yuxi JIANG, Aotian REN, Wenqi QIN, Jie FU, Xiuyang LYU. Study on continuous alcoholysis of fructose to methyl lactate over TS-1 and In-TS-1[J]. CIESC Journal, 2025, 76(6): 2678-2686.
李愽龙, 蒋雨希, 任傲天, 秦雯琪, 傅杰, 吕秀阳. TS-1/In-TS-1催化果糖一步法醇解制备乳酸甲酯连续化试验[J]. 化工学报, 2025, 76(6): 2678-2686.
Add to citation manager EndNote|Ris|BibTeX
| 催化剂 | SBET/ (m2·g-1) | SMicro/ (m2·g-1) | VTotal/ (cm3·g-1) | VMicro/ (cm3·g-1) |
|---|---|---|---|---|
| 新鲜 TS-1 | 454.5 | 400.2 | 0.34 | 0.17 |
| 使用后 TS-1 | 407.7 | 353.5 | 0.29 | 0.15 |
| 新鲜 In-TS-1 | 405.5 | 326.0 | 0.21 | 0.13 |
| 使用后 In-TS-1 | 391.5 | 316.7 | 0.21 | 0.13 |
Table 1 Textural properties of the fresh and spent catalysts
| 催化剂 | SBET/ (m2·g-1) | SMicro/ (m2·g-1) | VTotal/ (cm3·g-1) | VMicro/ (cm3·g-1) |
|---|---|---|---|---|
| 新鲜 TS-1 | 454.5 | 400.2 | 0.34 | 0.17 |
| 使用后 TS-1 | 407.7 | 353.5 | 0.29 | 0.15 |
| 新鲜 In-TS-1 | 405.5 | 326.0 | 0.21 | 0.13 |
| 使用后 In-TS-1 | 391.5 | 316.7 | 0.21 | 0.13 |
| 催化剂 | 酸量/(μmol·g-1) | ||
|---|---|---|---|
| Brønsted酸 | Lewis酸 | 总酸 | |
| 新鲜 TS-1[ | 20.8 | 400.9 | 421.7 |
| 使用后 TS-1 | 17.6 | 398.4 | 416.0 |
| 新鲜 In-TS-1 | 33.5 | 449.7 | 483.2 |
| 使用后 In-TS-1 | 32.6 | 438.7 | 471.3 |
Table 2 Acidic properties of the fresh and spent catalysts
| 催化剂 | 酸量/(μmol·g-1) | ||
|---|---|---|---|
| Brønsted酸 | Lewis酸 | 总酸 | |
| 新鲜 TS-1[ | 20.8 | 400.9 | 421.7 |
| 使用后 TS-1 | 17.6 | 398.4 | 416.0 |
| 新鲜 In-TS-1 | 33.5 | 449.7 | 483.2 |
| 使用后 In-TS-1 | 32.6 | 438.7 | 471.3 |
| 催化剂 | Ti 含量/%(质量) | In 含量/%(质量) |
|---|---|---|
| 新鲜 TS-1 | 2.29 | — |
| 使用后 TS-1 | 2.29 | — |
| 新鲜 In-TS-1 | 1.12 | 1.31 |
| 使用后 In-TS-1 | 1.11 | 1.29 |
Table 3 Ti and In contents of the fresh and spent catalysts
| 催化剂 | Ti 含量/%(质量) | In 含量/%(质量) |
|---|---|---|
| 新鲜 TS-1 | 2.29 | — |
| 使用后 TS-1 | 2.29 | — |
| 新鲜 In-TS-1 | 1.12 | 1.31 |
| 使用后 In-TS-1 | 1.11 | 1.29 |
| 反应形式 | 不同催化剂的MLA收率/% | |
|---|---|---|
| TS-1 | In-TS-1 | |
| 间歇 | 40.5[ | 71.9[ |
| 连续 | 49~50 | 59~60 |
Table 4 Yield of MLA in TS-1 and In-TS-1 catalyzed batch and continuous reactions
| 反应形式 | 不同催化剂的MLA收率/% | |
|---|---|---|
| TS-1 | In-TS-1 | |
| 间歇 | 40.5[ | 71.9[ |
| 连续 | 49~50 | 59~60 |
| 催化剂 | 反应条件 | MLA最高收率/% | 运行时间/h | MLA收率降低程度/% | 文献 |
|---|---|---|---|---|---|
| Sn-Beta | 0.65%(质量)葡萄糖甲醇溶液;165℃,4 MPa,滴流床 | 45 | 120 | 8 | [ |
| Sn-Beta | 1%(质量)葡萄糖甲醇水混合溶液,160℃,固定床 | 75 | 60 | 42 | [ |
| Sn-Beta | 1.25%(质量)果糖甲醇水混合溶液,160℃,固定床 | 54 | 456 | 5 | [ |
| In-TS-1 | 1%(质量)果糖甲醇溶液,200℃,固定床 | 60 | 144 | 未降低 | 本工作 |
| TS-1 | 1%(质量)果糖甲醇溶液,200℃,固定床 | 50 | 144 | 未降低 | 本工作 |
Table 5 Stability comparison of sugar continuous alcoholysis
| 催化剂 | 反应条件 | MLA最高收率/% | 运行时间/h | MLA收率降低程度/% | 文献 |
|---|---|---|---|---|---|
| Sn-Beta | 0.65%(质量)葡萄糖甲醇溶液;165℃,4 MPa,滴流床 | 45 | 120 | 8 | [ |
| Sn-Beta | 1%(质量)葡萄糖甲醇水混合溶液,160℃,固定床 | 75 | 60 | 42 | [ |
| Sn-Beta | 1.25%(质量)果糖甲醇水混合溶液,160℃,固定床 | 54 | 456 | 5 | [ |
| In-TS-1 | 1%(质量)果糖甲醇溶液,200℃,固定床 | 60 | 144 | 未降低 | 本工作 |
| TS-1 | 1%(质量)果糖甲醇溶液,200℃,固定床 | 50 | 144 | 未降低 | 本工作 |
| [1] | Dusselier M, Van Wouwe P, Dewaele A, et al. Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis[J]. Energy & Environmental Science, 2013, 6(5): 1415-1442. |
| [2] | Datta R, Henry M. Lactic acid: recent advances in products, processes and technologies: a review[J]. Journal of Chemical Technology & Biotechnology, 2006, 81(7): 1119-1129. |
| [3] | Mäki-Arvela P, Aho A, Murzin D Y. Heterogeneous catalytic synthesis of methyl lactate and lactic acid from sugars and their derivatives[J]. ChemSusChem, 2020, 13(18): 4833-4855. |
| [4] | Saulnier-Bellemare T, Patience G S. Homogeneous and heterogeneous catalysis of glucose to lactic acid and lactates: a review[J]. ACS Omega, 2024, 9(22): 23121-23137. |
| [5] | Wang J G, Liu Y F, Wang J H, et al. Cooperative catalysis of carbon supported zinc salts hybrid for efficient conversion of fructose to ethyl lactate[J]. Chemical Engineering Journal, 2023, 468: 143670. |
| [6] | Nemoto K, Hirano Y, Hirata K I, et al. Cooperative In-Sn catalyst system for efficient methyl lactate synthesis from biomass-derived sugars[J]. Applied Catalysis B: Environmental, 2016, 183: 8-17. |
| [7] | Wang J G, Liu Y F, Liu Y H, et al. New reaction pathways for high selectivity synthesis of methyl lactate via SnCl x (OH)2- x -catalyzed cellulose conversion in water-containing methanol solution[J]. Chemical Engineering Journal, 2024, 496: 154095. |
| [8] | Yamaguchi S, Yabushita M, Kim M, et al. Catalytic conversion of biomass-derived carbohydrates to methyl lactate by acid-base bifunctional γ - A l 2 O 3 [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8113-8117. |
| [9] | Yang L S, Yang X K, Tian E, et al. Mechanistic insights into the production of methyl lactate by catalytic conversion of carbohydrates on mesoporous Zr-SBA-15[J]. Journal of Catalysis, 2016, 333: 207-216. |
| [10] | Lyu X L, Wang L X, Chen X J, et al. Enhancement of catalytic activity by γ-NiOOH for the production of methyl lactate from sugars in near-critical methanol solutions[J]. Industrial & Engineering Chemistry Research, 2019, 58(9): 3659-3665. |
| [11] | Zhao X L, Wen T, Zhang J J, et al. Fe-doped SnO2 catalysts with both BA and LA sites: facile preparation and biomass carbohydrates conversion to methyl lactate MLA[J]. RSC Advances, 2017, 7(35): 21678-21685. |
| [12] | Wang J G, Wang J H, Liu Y F, et al. Temperature-responsive Zn-based catalysts for efficient catalytic conversion of biomass-derived carbohydrates to ethyl lactate[J]. Green Chemistry, 2023, 25(14): 5613-5625. |
| [13] | Lu X L, Wang L X, Lu X Y. Catalytic conversion of sugars to methyl lactate over Mg-MOF-74 in near-critical methanol solutions[J]. Catalysis Communications, 2018, 110: 23-27. |
| [14] | Jimenez-Martin J M, Orozco-Saumell A, Hernando H, et al. Efficient conversion of glucose to methyl lactate with Sn-USY: retro-aldol activity promotion by controlled ion exchange[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(27): 8885-8896. |
| [15] | Ma H, Wen Y, Yu C H, et al. Catalytic production of methyl lactate from fructose-based carbohydrates using yttrium modified ZSM-5 zeolite[J]. ChemistrySelect, 2021, 6(39): 10674-10681. |
| [16] | van der Graaff W N P, Tempelman C H L, Pidko E A, et al. Influence of pore topology on synthesis and reactivity of Sn-modified zeolite catalysts for carbohydrate conversions[J]. Catalysis Science & Technology, 2017, 7(14): 3151-3162. |
| [17] | Zhang W Y, Qin J Y, Liao S Q, et al. Titanium silicate-1 coupled with Sn and Er as effective catalysts for the production of lactic acid from saccharides[J]. ChemCatChem, 2025, 17(1): e202401303. |
| [18] | Li X C, Yuan X H, Xia G P, et al. Postsynthesis of delaminated MWW-type stannosilicate as a robust catalyst for sugar conversion to methyl lactate[J]. Industrial & Engineering Chemistry Research, 2021, 60(22): 8027-8034. |
| [19] | Iglesias J, Moreno J, Morales G, et al. Sn-Al-USY for the valorization of glucose to methyl lactate: switching from hydrolytic to retro-aldol activity by alkaline ion exchange[J]. Green Chemistry, 2019, 21(21): 5876-5885. |
| [20] | Jiménez-Martin J M, El Tawil-Lucas M, Montaña M, et al. Production of methyl lactate with Sn-USY and Sn-β: insights into real hemicellulose valorization[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(7): 2771-2782. |
| [21] | Qu H J, Chen X, Liu Z Y, et al. Bifunctional solid Lewis acid-base catalysts for efficient conversion of the glucose-xylose mixture to methyl lactate[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(6): 2387-2396. |
| [22] | Sun Y Y, Shi L, Wang H, et al. Efficient production of lactic acid from sugars over Sn-Beta zeolite in water: catalytic performance and mechanistic insights[J]. Sustainable Energy & Fuels, 2019, 3(5): 1163-1171. |
| [23] | Aho A, Kumar N, Eränen K, et al. Improving the methyl lactate yield from glucose over Sn-Al-Beta zeolite by catalyst promoters[J]. Microporous and Mesoporous Materials, 2023, 351: 112483. |
| [24] | Yang X M, Wang Y, Su Y L, et al. Influence of Sn content in Sn-β on selective production of methyl lactate from glucose[J]. Catalysis Letters, 2023, 153(6): 1773-1785. |
| [25] | Yang X M, Hu J, Lu T L, et al. The important role of weak Brønsted acid site of Sn-β in conversion of sucrose to methyl lactate[J]. Molecular Catalysis, 2023, 536: 112908. |
| [26] | Zhang J, Wang L, Wang G X, et al. Hierarchical Sn-beta zeolite catalyst for the conversion of sugars to alkyl lactates[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3123-3131. |
| [27] | Zhang Y F, Luo H, Zhao X P, et al. Continuous conversion of glucose into methyl lactate over the Sn-beta zeolite: catalytic performance and activity insight[J]. Industrial & Engineering Chemistry Research, 2020, 59(39): 17365-17372. |
| [28] | Padovan D, Tolborg S, Botti L, et al. Overcoming catalyst deactivation during the continuous conversion of sugars to chemicals: maximising the performance of Sn-Beta with a little drop of water[J]. Reaction Chemistry & Engineering, 2018, 3(2): 155-163. |
| [29] | Svitlana V P, Natalia L H, Artur M M, et al. Continuous conversion of fructose into methyl lactate over SnO2-ZnO/Al2O3 catalyst [J]. Journal of Chemistry and Technologies, 2021, 29(1): 1-9. |
| [30] | Jiang Y X, Lyu X L, Chen C, et al. An encapsulation strategy to design an In-TS-1 zeolite enabling high activity and stability toward the efficient production of methyl lactate from fructose[J]. Green Chemistry, 2024, 26(9): 5433-5440. |
| [31] | Jiang Y X, Lyu X L, Wei X W, et al. Reaction induced thermally stabilized TS-1 zeolite as a novel long-lasting catalyst for methyl lactate production[J]. Chemical Communications, 2023, 59(61): 9376-9379. |
| [32] | Botti L, Navar R, Tolborg S, et al. High-productivity continuous conversion of glucose to α-hydroxy esters over postsynthetic and hydrothermal Sn-beta catalysts[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(14): 4391-4403. |
| [1] | Haojie YANG, Chunyu LIU, Xuejiao LI, Liang YU, Xingcai LYU. Study of stability limits and emission characteristics in premixed ammonia-methane-air swirling flames in low swirl configurations [J]. CIESC Journal, 2025, 76(6): 3029-3040. |
| [2] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [3] | Fenhong SONG, Wenguang WANG, Liang GUO, Jing FAN. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites [J]. CIESC Journal, 2025, 76(6): 2983-2994. |
| [4] | Wenhao SUN, Jun TIAN, Kun ZHANG, Na LIU, Baosen CAO, Xiaoqiang LIANG. New development of novel separators with high thermal stability for lithium-ion batteries [J]. CIESC Journal, 2025, 76(6): 2524-2543. |
| [5] | Ziyang LI, Peixin SHEN, Xiao'a ZHANG, Chengzhong WANG, Ling SHI, Junying ZHANG. Synthesis and thermal stability of α, ω-hydroxy-terminated phenyl/phenylene-containing polysiloxanes with high vinyl content [J]. CIESC Journal, 2025, 76(6): 3041-3052. |
| [6] | Bingbing GAO, Nuo XU, Yunxiang BAI, Chunfang ZHANG, Yongqiang YANG, Liangliang DONG. Polymeric membranes for helium separation [J]. CIESC Journal, 2025, 76(5): 2119-2135. |
| [7] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [8] | Weijie ZHANG, Jiawen HE, Yiming ZHANG, Deli LI, Guangya HU, Xiao CAI, Jinhua WANG, Zuohua HUANG. Effects of fuel stratification on flow field and flame structure of multi-stage swirling methane combustion [J]. CIESC Journal, 2025, 76(4): 1754-1764. |
| [9] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
| [10] | Jiayuan FAN, Wenhui ZENG, Zhichao REN, Wentao ZHANG, Shuang LYU. Preparation and heat transfer enhancement of phase change slurry with multi-phase change temperature [J]. CIESC Journal, 2025, 76(4): 1863-1874. |
| [11] | Sanlong WANG, Yuelin WANG, Yu CAO. Research on the performance of inorganic perovskite solar cells based on phase heterojunction [J]. CIESC Journal, 2025, 76(3): 1346-1352. |
| [12] | Yao FU, Yingjuan SHAO, Wenqi ZHONG. Experimental study on cyclic heat storage performance of TiO2-doped calcium based materials under pressurized carbonation [J]. CIESC Journal, 2025, 76(3): 1180-1190. |
| [13] | Jun WAN, Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution [J]. CIESC Journal, 2025, 76(3): 1064-1075. |
| [14] | Liwen ZHAO, Guilian LIU. Performance enhancement and parameter optimization of complex catalytic reaction system based on system integration [J]. CIESC Journal, 2025, 76(3): 1111-1119. |
| [15] | Chuanchao HE, Jinghong ZHOU, Yueqiang CAO, Yao SHI, Xinggui ZHOU. Bed-particle dual scale coupled simulation on Ag/SiO2 catalyzed hydrogenation of oxalate to methyl glycolate [J]. CIESC Journal, 2025, 76(2): 654-666. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||