CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2983-2994.DOI: 10.11949/0438-1157.20241261
• Energy and environmental engineering • Previous Articles Next Articles
Fenhong SONG(
), Wenguang WANG, Liang GUO, Jing FAN(
)
Received:2024-11-08
Revised:2024-12-31
Online:2025-07-09
Published:2025-06-25
Contact:
Jing FAN
通讯作者:
范晶
作者简介:宋粉红(1983—),女,博士,教授,fenhongsong@neepu.edu.cn
基金资助:CLC Number:
Fenhong SONG, Wenguang WANG, Liang GUO, Jing FAN. Modulation of TiO2 by C-element modified g-C3N4 and photocatalytic hydrogen production performance of composites[J]. CIESC Journal, 2025, 76(6): 2983-2994.
宋粉红, 王文光, 郭亮, 范晶. C元素修饰g-C3N4对TiO2的调控及复合材料光催化产氢性能研究[J]. 化工学报, 2025, 76(6): 2983-2994.
Add to citation manager EndNote|Ris|BibTeX
| 样品 | 比表面积/(m2/g) | 孔径/nm |
|---|---|---|
| CCN0.1 | 36.0032 | 19.9325 |
| TiO2 | 81.1675 | 13.7842 |
| 0.10CCN0.1-TiO2 | 64.7460 | 16.4268 |
Table 1 Surface structural properties of the samples
| 样品 | 比表面积/(m2/g) | 孔径/nm |
|---|---|---|
| CCN0.1 | 36.0032 | 19.9325 |
| TiO2 | 81.1675 | 13.7842 |
| 0.10CCN0.1-TiO2 | 64.7460 | 16.4268 |
| [1] | 席佳铭, 孙亮, 葛沛然, 等. 考虑电热需求响应的光热-电热综合能源系统源荷协调经济调度[J]. 东北电力大学学报, 2023, 43(3): 61-71. |
| Xi J M, Sun L, Ge P R, et al. Source-charge coordinated economic dispatching of photothermal-electrothermal integrated energy system considering electric heating demand response[J]. Journal of Northeast Electric Power University, 2023, 43(3): 61-71. | |
| [2] | Densing M, Wan Y. Low-dimensional scenario generation method of solar and wind availability for representative days in energy modeling[J]. Applied Energy, 2022, 306: 118075. |
| [3] | 李娟, 王玲, 孙康杰, 等. 考虑风电不确定性和有功无功联合调整的两阶段优化调度[J]. 东北电力大学学报, 2023, 43(3): 72-81. |
| Li J, Wang L, Sun K J, et al. Two-stage optimal dispatch considering uncertainty of wind power and joint regulaiton of active and reactive power[J]. Journal of Northeast Electric Power University, 2023, 43(3): 72-81. | |
| [4] | Zhang B, Zhang S X, Yao R, et al. Progress and prospects of hydrogen production: opportunities and challenges[J]. Journal of Electronic Science and Technology, 2021, 19(2): 100080. |
| [5] | 曾煜轩, 冀爽, 王金鑫. 计及制氢效率变化与氢能绿证的综合能源系统优化调度[J]. 东北电力大学学报, 2024, 44(1): 25-33. |
| Zeng Y X, Ji S, Wang J X. Optimization dispatch of integrated energy systems considering hydrogen production efficiency variation and hydrogen energy green certificate[J]. Journal of Northeast Electric Power University, 2024, 44(1): 25-33. | |
| [6] | Bae S Y, Mahmood J, Jeon I Y, et al. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction[J]. Nanoscale Horizons, 2020, 5(1): 43-56. |
| [7] | Zhang H T, Sun Z X, Hu Y H. Steam reforming of methane: current states of catalyst design and process upgrading[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111330. |
| [8] | Zhang J X, Zhong J F, Yang L, et al. Enhancement effect of semicoke waste heat on energy conservation and hydrogen production from biomass gasification[J]. Renewable Energy, 2024, 236: 121340. |
| [9] | 方书起, 王毓谦, 李攀, 等. 生物油催化重整制氢研究进展[J]. 化工进展, 2022, 41(3): 1330-1339. |
| Fang S Q, Wang Y Q, Li P, et al. Research progress of hydrogen production by catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1330-1339. | |
| [10] | Wu X H, Chen G Q, Wang J, et al. Review on S-scheme heterojunctions for photocatalytic hydrogen evolution[J]. Acta Physico Chimica Sinica, 2023, 39(6): 2212016. |
| [11] | 徐振和, 李泓江, 高雨, 等. In2O3/Ag: ZnIn2S4 “Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635. |
| Xu Z H, Li H J, Gao Y, et al. Preparation of In2O3/Ag: ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis[J]. CIESC Journal, 2022, 73(8): 3625-3635. | |
| [12] | 李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520. |
| Li L R, Peng J, Fu B, et al. Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 508-520. | |
| [13] | An P, Zhang Q H, Yang Z, et al. Research progress of solar hydrogen production technology under double carbon target[J]. Acta Chimica Sinica, 2022, 80(12): 1629. |
| [14] | Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
| [15] | Ansari F, Sheibani S, Fernández-García M. A response surface methodology optimization for efficient photocatalytic degradation over reusable Cu x O/TiO2 nanocomposite on copper wire[J]. Materials Research Bulletin, 2023, 166: 112342. |
| [16] | Yuan S J, Dai L H, Xie M F, et al. Modification optimization and application of graphitic carbon nitride in photocatalysis: current progress and future prospects[J]. Chemical Engineering Science, 2024, 296: 120245. |
| [17] | Yang J J, Wang H, Jiang L B, et al. Defective polymeric carbon nitride: fabrications, photocatalytic applications and perspectives[J]. Chemical Engineering Journal, 2022, 427: 130991. |
| [18] | 陈克龙, 黄建花. g-C3N4-CdS-NiS2复合纳米管的制备及可见光催化分解水制氢[J]. 化工学报, 2020, 71(1): 397-408. |
| Chen K L, Huang J H. g-C3N4-CdS-NiS2 composite nanotube: synthesis and its photocatalytic activity for H2 generation under visible light[J]. CIESC Journal, 2020, 71(1): 397-408. | |
| [19] | Tuntithavornwat S, Saisawang C, Ratvijitvech T, et al. Recent development of black TiO2 nanoparticles for photocatalytic H2 production: an extensive review[J]. International Journal of Hydrogen Energy, 2024, 55: 1559-1593. |
| [20] | 李勇, 高佳琦, 杜超, 等. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458. |
| Li Y, Gao J Q, Du C, et al. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation[J]. CIESC Journal, 2023, 74(6): 2458. | |
| [21] | Li M, Zhang R Y, Zou Z P, et al. Optimizing physico-chemical properties of hierarchical ZnO/TiO2 nano-film by the novel heating method for photocatalytic degradation of antibiotics and dye[J]. Chemosphere, 2024, 346: 140392. |
| [22] | Ning X F, Lu G X. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting[J]. Nanoscale, 2020, 12(3): 1213-1223. |
| [23] | Kim J, Nguyen T N, Yoo H. Fabrication and photocatalytic activity of reduced dendritic fibrous nanotitania[J]. Applied Surface Science, 2024, 654: 159446. |
| [24] | Rashid R, Shafiq I, Gilani M R H S, et al. Advancements in TiO2-based photocatalysis for environmental remediation: strategies for enhancing visible-light-driven activity[J]. Chemosphere, 2024, 349: 140703. |
| [25] | Ahmadpour N, Nowrouzi M, Madadi Avargani V, et al. Design and optimization of TiO2-based photocatalysts for efficient removal of pharmaceutical pollutants in water: recent developments and challenges[J]. Journal of Water Process Engineering, 2024, 57: 104597. |
| [26] | Zhang X Q, Zhang W N, Xu Y M, et al. Defective titanium dioxide-supported ultrasmall Au clusters for photocatalytic hydrogen production[J]. Frontiers in Physics, 2020, 8: 616349. |
| [27] | Wu C, Liu K L, Li Y K, et al. Dual-modified hollow spherical shell MoS2@TiO2/TiN composites for photocatalytic hydrogen production[J]. Energy Technology, 2022, 10(1): 2100265. |
| [28] | Alcudia-Ramos M A, Fuentez-Torres M O, Ortiz-Chi F, et al. Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production[J]. Ceramics International, 2020, 46(1): 38-45. |
| [29] | Liu E L, Lin X, Hong Y Z, et al. Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution[J]. Renewable Energy, 2021, 178: 757-765. |
| [30] | 薛淑滢, 冯嫄淼, 张丽莉, 等. C掺杂g-C3N4/PVDF纳米纤维膜的制备及其可见光降解性能研究[J]. 水处理技术, 2024, 50(2): 83-89. |
| Xue S Y, Feng Y M, Zhang L L, et al. Preparation of C-doped g-C3N4/PVDF nanofiber membrane and its degradation performance under visible light[J]. Technology of Water Treatment, 2024, 50(2): 83-89. | |
| [31] | Wang Q Q, Tian Y X, Chen M Y, et al. Preparation of porous C doped g-C3N4 nanosheets controlled by acetamide for photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy, 2022, 47(71): 30517-30529. |
| [32] | Chen M, Wang H H, Chen X Y, et al. High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study[J]. Chemical Engineering Journal, 2020, 390: 124481. |
| [33] | Xing Q F, Zhang M, Xu X Q, et al. Rapid photocatalytic inactivation of E.coli by polyethyleneimine grafted O-doped g-C3N4: synergetic effects of the boosted reactive oxygen species production and adhesion performance[J]. Applied Surface Science, 2022, 573: 151496. |
| [34] | Shang Q Q, Fang Y Z, Yin X L, et al. Structure modulation of g-C3N4 in TiO2{001}/g-C3N4 hetero-structures for boosting photocatalytic hydrogen evolution[J]. RSC Advances, 2021, 11(59): 37089-37102. |
| [35] | Dehkordi A B, Badiei A. Insight into the activity of TiO2 @nitrogen-doped hollow carbon spheres supported on g-C3N4 for robust photocatalytic performance[J]. Chemosphere, 2022, 288: 132392. |
| [36] | Zhang P, Wu L J, Pan W G, et al. Efficient photocatalytic H2 evolution over NiS-PCN Z-scheme composites via dual charge transfer pathways[J]. Applied Catalysis B: Environmental, 2021, 289: 120040. |
| [37] | Ke T, Shen S Y, Yang K, et al. In situ fabrication of Bi2O3/C3N4/TiO2@C photocatalysts for visible-light photodegradation of sulfamethoxazole in water[J]. Applied Surface Science, 2022, 580: 152302. |
| [38] | Byrne C, Moran L, Hermosilla D, et al. Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: theory and experiments[J]. Applied Catalysis B: Environmental, 2019, 246: 266-276. |
| [39] | Wang J, Wang G H, Cheng B, et al. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation[J]. Chinese Journal of Catalysis, 2021, 42(1): 56-68. |
| [40] | Qin H, Guo R T, Liu X Y, et al. Z-Scheme MoS2/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction[J]. Dalton Transactions, 2018, 47(42): 15155-15163. |
| [41] | Su L X, Liu Z Y, Ye Y L, et al. Heterostructured boron doped nanodiamonds@g-C3N4 nanocomposites with enhanced photocatalytic capability under visible light irradiation[J]. International Journal of Hydrogen Energy, 2019, 44(36): 19805-19815. |
| [42] | Hua S X, Qu D, An L, et al. Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route[J]. Applied Catalysis B: Environmental, 2019, 240: 253-261. |
| [43] | Tang J Y, Guo R T, Pan W G, et al. Visible light activated photocatalytic behaviour of Eu(Ⅲ) modified g-C3N4 for CO2 reduction and H2 evolution[J]. Applied Surface Science, 2019, 467: 206-212. |
| [1] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [2] | Haiyan JI, Jiayin LIU, Haijun WU, Jinglin HE, Ziheng JIN, Dianhang WEI, Xia JIANG. Research progress on the application of low-temperature plasma in biomass gasification to produce hydrogen [J]. CIESC Journal, 2025, 76(6): 2419-2433. |
| [3] | Bolong LI, Yuxi JIANG, Aotian REN, Wenqi QIN, Jie FU, Xiuyang LYU. Study on continuous alcoholysis of fructose to methyl lactate over TS-1 and In-TS-1 [J]. CIESC Journal, 2025, 76(6): 2678-2686. |
| [4] | Pengwei LIAO, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Siyu YANG, Hao YU. Wind power hydrogen production systems considering uncertainty: multi-time scale operation strategy [J]. CIESC Journal, 2025, 76(6): 2743-2754. |
| [5] | Lili LU, Chen LI, Liuyun CHEN, Xinling XIE, Xuan LUO, Tongming SU, Zuzeng QIN, Hongbing JI. Morphology regulation of BiOBr and study on its performance of photocatalytic CO2 reduction [J]. CIESC Journal, 2025, 76(6): 2687-2700. |
| [6] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [7] | Lu LIU, Kai WAN, Wenyue WANG, Tai WANG, Jiancheng TANG, Shaoheng WANG. Study on orthohydrogen and parahydrogen conversion coupled flow and heat transfer based on helium expansion refrigeration [J]. CIESC Journal, 2025, 76(4): 1513-1522. |
| [8] | Zhineng TAO, Tong QIU, Baoguo WANG. Steady-state modeling on hydrogen production by anion exchange membrane water electrolysis [J]. CIESC Journal, 2025, 76(4): 1711-1721. |
| [9] | Pengfei ZHAO, Ruomei QI, Xinfeng GUO, Hu FANG, Lufei XU, Xiao LI, Jin LIN. Analysis of hydrogen-to-oxygen impurities in a 1000 m3/h alkaline water electrolysis system [J]. CIESC Journal, 2025, 76(4): 1765-1778. |
| [10] | Liwen ZHAO, Guilian LIU. Performance enhancement and parameter optimization of complex catalytic reaction system based on system integration [J]. CIESC Journal, 2025, 76(3): 1111-1119. |
| [11] | Jingrun LI, Siyu YANG, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Hao YU. Analysis of multiple operating strategies for large-scale wind power coupled with thermal power for hydrogen production under various scenarios [J]. CIESC Journal, 2025, 76(3): 1191-1206. |
| [12] | Jun WAN, Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution [J]. CIESC Journal, 2025, 76(3): 1064-1075. |
| [13] | Chuanchao HE, Jinghong ZHOU, Yueqiang CAO, Yao SHI, Xinggui ZHOU. Bed-particle dual scale coupled simulation on Ag/SiO2 catalyzed hydrogenation of oxalate to methyl glycolate [J]. CIESC Journal, 2025, 76(2): 654-666. |
| [14] | Xiaohang ZHONG, Wei XU, Wen ZHANG, Li XU, Yuxin WANG. A critical review on the effects of Fe impurity on H2 production via alkaline water electrolysis [J]. CIESC Journal, 2025, 76(2): 519-531. |
| [15] | Mengfan YIN, Qian WANG, Tao ZHENG, Kui JI, Shaogui WANG, Hui GUO, Zhiqiang LIN, Rui ZHANG, Hui SUN, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG, Yueping WANG. Process design of 10000 t industrial demonstration of hydrogen production from renewable energy electrolytic water - low temperature and low pressure ammonia synthesis [J]. CIESC Journal, 2025, 76(2): 825-834. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||