CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5203-5212.DOI: 10.11949/0438-1157.20250235
• Separation engineering • Previous Articles Next Articles
Fanpeng MENG1(
), Shuangjie YUAN1, Fan ZHOU2, Yuxiu SUN2(
), Zhihua QIAO2(
)
Received:2025-03-10
Revised:2025-04-21
Online:2025-11-25
Published:2025-10-25
Contact:
Yuxiu SUN, Zhihua QIAO
孟凡鹏1(
), 远双杰1, 周帆2, 孙玉绣2(
), 乔志华2(
)
通讯作者:
孙玉绣,乔志华
作者简介:孟凡鹏(1986—),男,硕士,高级工程师,mengfanpeng@cppe.com.cn
基金资助:CLC Number:
Fanpeng MENG, Shuangjie YUAN, Fan ZHOU, Yuxiu SUN, Zhihua QIAO. Construction of high-performance polymer-MOF based mixed matrix membrane for low concentration CO2 capture[J]. CIESC Journal, 2025, 76(10): 5203-5212.
孟凡鹏, 远双杰, 周帆, 孙玉绣, 乔志华. 用于低浓度CO2捕集的高性能聚合物-MOF基混合基质膜构建[J]. 化工学报, 2025, 76(10): 5203-5212.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 (a) Structural formulae of 1F-BDC ligand and cPIM-1; (b) PXRD spectra of UiO-66 and 1F-PUiO-66; (c) FTIR spectra of cPIM-1, UiO-66 and 1F-PUiO-66 samples and (d) localized magnification
Fig.5 SEM cross-sections of cPIM-1 membranes (a), 20%(mass) UiO-66/cPIM-1 membranes (b) and 1F-PUiO-66/cPIM-1 membranes with loading of 10%(mass) (c), 30%(mass) (d), 50%(mass) (e) and 60%(mass) (f), and local magnification cross-section of 60%(mass)1F-PUiO-66/cPIM-1 membrane (g)
Fig.6 PXRD patterns of UiO-66/cPIM-1 membranes (a) and 1F-PUiO-66/cPIM-1 membranes (b) with different filler loadings; FTIR spectra of UiO-66/cPIM-1 membranes (c) and 1F-PUiO-66/cPIM-1 membranes (d) with different filler loadings
Fig.7 (a) Gas separation performance of cPIM-1 pure membranes and mixed matrix membranes(mixed matrix membrane loadings were both 20%(mass)); (b) Binary gas separation performance of 1F-PUiO-66/cPIM-1 membranes with different loadings; (c) Gas separation performance of 50%(mass) 1F-PUiO-66/cPIM-1 membranes at different test pressures; (d) Mixed gas separation performance of 1F-PUiO-66/cPIM-1 membranes compared with the 2019 Robeson upper bound[46](CO2/N2=1/99,volume ratio; 25℃)
| [1] | Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art[J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663. |
| [2] | Yampolskii Y, Freeman B. Membrane Gas Separation[M]. New Jersey: John Wiley & Sons Ltd., 2010: 29-42. |
| [3] | Baker R W, Low B T. Gas separation membrane materials: a perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
| [4] | Debost M, Klar P B, Barrier N, et al. Synthesis of discrete CHA zeolite nanocrystals without organic templates for selective CO2 capture[J]. Angewandte Chemie International Edition, 2020, 59(52): 23491-23495. |
| [5] | Cui W G, Hu T L, Bu X H. Metal-organic framework materials for the separation and purification of light hydrocarbons[J]. Advanced Materials, 2020, 32(3): 1806445. |
| [6] | Yang L F, Cui X L, Zhang Z Q, et al. An asymmetric anion-pillared metal-organic framework as a multisite adsorbent enables simultaneous removal of propyne and propadiene from propylene[J]. Angewandte Chemie International Edition, 2018, 57(40): 13145-13149. |
| [7] | Kumar S, Mondal M K. Selection of efficient absorbent for CO2 capture from gases containing low CO2 [J]. Korean Journal of Chemica Engineering, 2020, 37(2): 231-239. |
| [8] | Fine N A, Nielsen P T, Rochelle G T. Decomposition of nitrosamines in CO2 capture by aqueous piperazine or monoethanolamine[J]. Environmental Science & Technology, 2014, 48(10): 5996-6002. |
| [9] | Ding Y. Perspective on gas separation membrane materials from process economics point of view[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 556-568. |
| [10] | Gin D L, Noble R D. Designing the next generation of chemical separation membranes[J]. Science, 2011, 332(6030): 674-676. |
| [11] | Kamble A R, Patel C M, Murthy Z V P. A review on the recent advances in mixed matrix membranes for gas separation processes[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111062. |
| [12] | Cheng Y D, Wang Z H, Zhao D. Mixed matrix membranes for natural gas upgrading: current status and opportunities[J]. Industrial & Engineering Chemistry Research, 2018, 57(12): 4139-4169. |
| [13] | Zhao J H, Xie K, Liu L, et al. Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2 /CH4 selectivity through incorporating ZSM-25 zeolite[J]. Journal of Membrane Science, 2019, 583: 23-30. |
| [14] | Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
| [15] | Wang H, Zhao S, Liu Y, et al. Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations[J]. Nature Communications, 2019, 10: 4204. |
| [16] | Lu Y Z H, Zhang H C, Chan J Y, et al. Homochiral MOF-polymer mixed matrix membranes for efficient separation of chiral molecules[J]. Angewandte Chemie International Edition, 2019, 131(47): 17084-17091. |
| [17] | Rodenas T, Luz I, Prieto G, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14(1): 48-55. |
| [18] | Caro J. Quo vadis, MOF?[J]. Chemie Ingenieur Technik, 2018, 90(11): 1759-1768. |
| [19] | Bae T H, Lee J S, Qiu W L, et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals[J]. Angewandte Chemie International Edition, 2010, 49(51): 9863-9866. |
| [20] | Wu X Y, Tian Z Z, Wang S F, et al. Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation[J]. Journal of Membrane Science, 2017, 528: 273-283. |
| [21] | Guo A, Ban Y J, Yang K, et al. Molecular sieving mixed matrix membranes embodying nano-fillers with extremely narrow pore-openings[J]. Journal of Membrane Science, 2020, 601: 117880. |
| [22] | Zou C C, Li Q Q, Hua Y Y, et al. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29093-29100. |
| [23] | Qian Q H, Asinger P A, Lee M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
| [24] | Ma X J, Chai Y T, Li P, et al. Metal-organic framework films and their potential applications in environmental pollution control[J]. Accounts of Chemical Research, 2019 52(5): 1461-1470. |
| [25] | Jeong H K. Metal-organic framework membranes: unprecedented opportunities for gas separations[J]. AIChE Journal, 2021, 67(6): e17258. |
| [26] | Lee T H, Lee B K, Youn C, et al. Interface engineering in MOF/crosslinked polyimide mixed matrix membranes for enhanced propylene/propane separation performance and plasticization resistance[J]. Journal of Membrane Science, 2023, 667: 121182. |
| [27] | Lee T H, Oh J Y, Jang J K, et al. Elucidating the role of embedded metal-organic frameworks in water and ion transport properties in polymer nanocomposite membranes[J]. Chemistry of Materials, 2020, 32(23): 10165-10175. |
| [28] | Wang H L, He S F, Qin X D, et al. Interfacial engineering in metal-organic framework-based mixed matrix membranes using covalently grafted polyimide brushes[J]. Journal of the American Chemical Society, 2018, 140(49): 17203-17210. |
| [29] | Zhu B, He S S, Yang Y, et al. Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering[J]. Nature Communications, 2023, 14: 1697. |
| [30] | Tien-Binh N, Rodrigue D, Kaliaguine S. In-situ cross interface linking of PIM-1 polymer and UiO-66-NH2 for outstanding gas separation and physical aging control[J]. Journal of Membrane Science, 2018, 548: 429-438. |
| [31] | Cheng Y D, Joarder B, Datta S J, et al. Mixed matrix membranes with surface functionalized metal-organic framework sieves for efficient propylene/propane separation[J]. Advanced Materials, 2023, 35(25): 2300296. |
| [32] | Wu C H, Zhang K X, Wang H L, et al. Enhancing the gas separation selectivity of mixed-matrix membranes using a dual-interfacial engineering approach[J]. Journal of the American Chemical Society, 2020, 142(43): 18503-18512. |
| [33] | Japip S, Xiao Y C, Chung T S. Particle-size effects on gas transport properties of 6FDA-durene/ZIF-71 mixed matrix membranes[J]. Industrial & Engineering Chemistry Research, 2016, 55(35): 9507-9517. |
| [34] | Li H, Tuo L H, Yang K, et al. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: interfacial toughening effect of ionic liquid[J]. Journal of Membrane Science, 2016, 511: 130-142. |
| [35] | Zhang Z J, Nguyen H T H, Miller S A, et al. polyMOFs: a class of interconvertible polymer-metal-organic-framework hybrid materials[J]. Angewandte Chemie International Edition, 2015, 54(21): 6152-6157. |
| [36] | Zhang Z J, Nguyen H T H, Miller S A, et al. Polymer-metal-organic frameworks (polyMOFs) as water tolerant materials for selective carbon dioxide separations[J]. Journal of the American Chemical Society, 2016, 138(3): 920-925. |
| [37] | Qin Z X, Sun Y X, Zhang Z Q, et al. Synergistic effect of molecular sieving and adsorption inhibition in MOF-based mixed matrix membranes for efficient O2/N2 separation[J]. Chemical Engineering Journal, 2024, 497: 154615. |
| [38] | Rodriguez K M, Wu A X, Qian Q H, et al. Facile and time-efficient carboxylic acid functionalization of PIM-1: effect on molecular packing and gas separation performance[J]. Macromolecules, 2020, 53(15): 6220-6234. |
| [39] | Lee T H, Lee B K, Yoo S Y, et al. PolyMOF nanoparticles constructed from intrinsically microporous polymer ligand towards scalable composite membranes for CO2 separation[J]. Nature Communications, 2023, 14: 8330. |
| [40] | Sun Y X, Geng C X, Zhang Z Q, et al. Two-dimensional basic cobalt carbonate supported ZIF-67 composites towards mixed matrix membranes for efficient CO2/N2 separation[J]. Journal of Membrane Science, 2022, 661: 120928. |
| [41] | Sun Y X, Qin Z X, Geng C X, et al. Enhancing CO2/N2 separation performances by turning membrane affinity for CO2 [J]. Separation and Purification Technology, 2024, 337: 126377. |
| [42] | Wang Z B, Sun Y X, Qin Z X, et al. Construction of MOF-based mixed matrix membranes with multiple fluorine sites for low concentration CO2 separation under humid conditions[J]. Separation and Purification Technology, 2025, 369: 133149. |
| [43] | Shieh F K, Wang S C, Leo S Y, et al. Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size[J]. Chemistry-A European Journal, 2013, 19(34): 11139-11142. |
| [44] | Chen Z, Zhang P, Wu H, et al. Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation[J]. Separation and Purification Technology, 2022, 288: 120682. |
| [45] | Qu K, Xu J P, Dai L H, et al. Electrostatic-induced crystal-rearrangement of porous organic cage membrane for CO2 capture[J]. Angewandte Chemie International Edition, 2022, 61(31): e202205481. |
| [46] | Comesaña-Gándara B, Chen J, Bezzu C G, et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity[J]. Energy & Environmental Science, 2019, 12(9): 2733-2740. |
| [47] | Chew T L, Yeong Y F, Ho C D, et al. Ion-exchanged silicoaluminophosphate-34 membrane for efficient CO2/N2 separation with low CO2 concentration in the gas mixture[J]. Industrial & Engineering Chemistry Research, 2019, 58(2): 729-735. |
| [1] | Xingliang PEI, Cuiping YE, Yingli PEI, Wenying LI. Selective adsorption and separation of xylene isomers by alkali-modified MIL-53(Cr) [J]. CIESC Journal, 2025, 76(S1): 258-267. |
| [2] | Zheng GAO, Hui WANG, Zhiguo QU. Data-driven high-throughput screening of anion-pillared metal-organic frameworks for hydrogen storage [J]. CIESC Journal, 2025, 76(8): 4259-4272. |
| [3] | Bing ZHANG, Jianhui LI, Xinrong MA, Yang CHEN, Jinping LI, Libo LI. Research progress of MOF preparation by steam-assisted method [J]. CIESC Journal, 2025, 76(5): 2026-2041. |
| [4] | Jingxian HUA, Yurong LUO, Yawei GU, Tingting WU, Yichang PAN, Weihong XING. Preparation of ultra-thin oriented ZIF-8 membrane for efficient ethylene/ethane separation [J]. CIESC Journal, 2025, 76(5): 2209-2218. |
| [5] | Pengtao GUO, Ting WANG, Bo XUE, Yunpan YING, Dahuan LIU. Ultramicroporous MOF with multiple adsorption sites for CH4/N2 separation [J]. CIESC Journal, 2025, 76(5): 2304-2312. |
| [6] | Haotian AN, Zhangye HAN, Muyao LU, Awu ZHOU, Jianrong LI. Promoting industrial application of MOF: scale-up preparation and shaping [J]. CIESC Journal, 2025, 76(5): 2011-2025. |
| [7] | Zibo YANG, Youfa WANG, Hansong YUE, Shuangjie YUAN, Fujiang GENG, Qingqing LI, De AO, Bin LI, Mao YE, Zhenjie GU, Zhihua QIAO. Recent progress of MOF glasses based gas separation membrane [J]. CIESC Journal, 2025, 76(5): 2158-2168. |
| [8] | Yaohui ZHANG, Yujie BAN, Weishen YANG. Vapor-phase synthesis and post-synthetic modification of metal-organic framework membranes [J]. CIESC Journal, 2025, 76(5): 2070-2086. |
| [9] | Haofan ZHAO, Haojie REN, Zongkai LIU, Guanying DONG, Yatao ZHANG. Research progress of MOFs glass membranes in gas separation applications [J]. CIESC Journal, 2025, 76(5): 2042-2054. |
| [10] | Chunhui TAO, Yinhui LI, Yu FU, Ran DUAN, Zeyi ZHAO, Yufeng TANG, Gang ZHANG, Heping MA. Selective adsorption and purification of low-concentration Kr gas using various adsorbents [J]. CIESC Journal, 2025, 76(5): 2358-2366. |
| [11] | Dong GU, Xingjian PI, Die ZHANG, Ying ZHANG. Construction and H2/CO2 separation performance evaluation of CAU-1/PI mixed matrix membrane with different nanoparticle sizes [J]. CIESC Journal, 2025, 76(5): 2410-2418. |
| [12] | Dandong NING, Jianhui LI, Yang CHEN, Jinping LI, Libo LI. Study on flocculation techniques in the large-scale production of MIL-101(Cr) [J]. CIESC Journal, 2025, 76(5): 2327-2336. |
| [13] | Yue ZHANG, Jiaxin LIU, Jing MA, Yi LIU. Recent progress on metal-organic framework membranes towards uranium separation from seawater [J]. CIESC Journal, 2025, 76(5): 2087-2100. |
| [14] | Yuanhua LI, Siqi LING, Kejun FENG, Ying FENG, Yuching KUO, Shihhuan HSIEH. Construction and catalytic application of immobilized lipase microreactors based on cMOFs for the synthesis of mandelic acid [J]. CIESC Journal, 2025, 76(3): 1170-1179. |
| [15] | Yinjie ZHOU, Sibei JI, Songyang HE, Xu JI, Ge HE. Machine learning-assisted high-throughput screening approach for CO2 separation from CO2-rich natural gas using metal-organic frameworks [J]. CIESC Journal, 2025, 76(3): 1093-1101. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||