CIESC Journal ›› 2025, Vol. 76 ›› Issue (12): 6527-6535.DOI: 10.11949/0438-1157.20250419
• Surface and interface engineering • Previous Articles Next Articles
Zibing JIANG1(
), Xiubin XU1(
), Chuanghong XIAO1,2, Jianwei LIU1, Linjie WEI1, Xu WU1(
)
Received:2025-04-20
Revised:2025-05-10
Online:2026-01-23
Published:2025-12-31
Contact:
Xiubin XU, Xu WU
蒋子冰1(
), 徐秀彬1(
), 肖创洪1,2, 刘健伟1, 韦林洁1, 吴旭1(
)
通讯作者:
徐秀彬,吴旭
作者简介:蒋子冰(2000—),男,硕士研究生,1365626529@qq.com
基金资助:CLC Number:
Zibing JIANG, Xiubin XU, Chuanghong XIAO, Jianwei LIU, Linjie WEI, Xu WU. Research and application of silicone-based emulsion hydrogel[J]. CIESC Journal, 2025, 76(12): 6527-6535.
蒋子冰, 徐秀彬, 肖创洪, 刘健伟, 韦林洁, 吴旭. 硅基乳液凝胶的制备及应用[J]. 化工学报, 2025, 76(12): 6527-6535.
Add to citation manager EndNote|Ris|BibTeX
Fig.1 Design and synthesis of amphiphilic cross-linkable organic polysiloxanes (a);Bright-field images of the gel formation process (b) and confocal laser scanning microscopy (CLSM) images (c);CLSM images show the structures of the emulsion [(d),(e)] and HOLH [(f),(g)]
Fig.2 Schematic illustration of the preparation and structure of HOLH (a); EDX elemental mapping of cross-sections of HOLH (b); CLSM images showing the cross-section structures of HOLH (c)
Fig.3 Photographs of solid hydrogel (a) and HOLH (b) stayed in air, water, and silicon oil for 7 d; The transmittance of solid hydrogel and HOLH (c);Time profile of change in mass of the solid hydrogel and HOLH after exposure in air, water, and silicon oil for various periods (d)
Fig.4 Contact angles(2 μl in volume) and sliding angles (20 μl) of water, hexadecane, cooking oil, pump oil, crude oil, NaOH, HCl, E. coli, FP liquid, BSA solution, blood and soy sauce on the HOLH surfaces(a); Video Screenshot of 20 μl liquids sliding off the surfaces(b)
Fig.5 The change in brightness of the bulb when pressing the sensor HOLH (a); The mechanical properties of the sensor HOLH (b); The loading-unloading compression test of the sensor HOLH (c); The cyclic compression curve of the sensor HOLH for more than 100 cycles at a compression rate of 50% (d); The relative resistance change of the sensor HOLH for more than 100 cycles at a compression rate of 50% (e); The relative resistance change of the sensor HOLH under compression (f); The stress-strain curve and the photo taken when measuring the minimum bending radius (g); The relative resistance change under bending (h)
| [1] | Yang C H, Suo Z G. Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142. |
| [2] | Larson C, Peele B, Li S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing[J]. Science, 2016, 351(6277): 1071-1074. |
| [3] | Zhang C H, Zhao Y S. Flexible photonic materials and devices: synthetic strategies, sensing properties, and wearable applications[J]. Advanced Materials, 2024: 2415856. |
| [4] | Aliev A E, Oh J, Kozlov M E, et al. Giant-stroke, superelastic carbon nanotube aerogel muscles[J]. Science, 2009, 323(5921): 1575-1578. |
| [5] | 杜海燕, 朱凯, 游峰, 等. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
| Du H Y, Zhu K, You F, et al. Self-healing anti-freezing ionic hydrogel for strain sensors[J]. CIESC Journal, 2024, 75(7): 2709-2722. | |
| [6] | Huang Y C, Zhu T, Yuan H X, et al. An in situ encapsulation strategy for enhancing the stability of hydrogels in both air and water through surface-confined copolymerization[J]. Chemical Engineering Journal, 2024, 485: 149847. |
| [7] | Bai Y Y, Chen B H, Xiang F, et al. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt[J]. Applied Physics Letters, 2014, 105(15): 151903. |
| [8] | Gao W C, Chang J, Li X P, et al. A quenched double-hydrophilic coating for the enhancement of water retention of hydrogels[J]. Advanced Functional Materials, 2023, 33(31): 2303306. |
| [9] | An H, Zhang M, Huang Z, et al. Hydrophobic cross-linked chains regulate high wet tissue adhesion hydrogel with toughness, anti-hydration for dynamic tissue repair[J]. Advanced Materials, 2024, 36(8): 2310164. |
| [10] | Yuan H X, Zhu T, Huang Y C, et al. Hydrophobic and adhesive elastomer encapsulation for anti-drying, non-swelling, and adhesive hydrogels[J]. Advanced Functional Materials, 2024, 34(51): 2409703. |
| [11] | 林典, 江国梅, 徐秀彬, 等. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
| Lin D, Jiang G M, Xu X B, et al. Preparation and drag reduction effect of silicon-based liquid-like anti-crude-oil-adhesion coatings[J]. CIESC Journal, 2023, 74(8): 3438-3445. | |
| [12] | Amini S, Kolle S, Petrone L, et al. Preventing mussel adhesion using lubricant-infused materials[J]. Science, 2017, 357(6352): 668-673. |
| [13] | Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443-447. |
| [14] | Rabnawaz M, Liu G J, Hu H. Fluorine-free anti-smudge polyurethane coatings[J]. Angewandte Chemie, 2015, 127(43): 12913-12918. |
| [15] | Cui J X, Daniel D, Grinthal A, et al. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing[J]. Nature Materials, 2015, 14(8): 790-795. |
| [16] | Zhao S D, Wu L M, Zhou S X. Nano silicone oil pools with wear-responsive secretion for enhancing self-healing in hard anti-smudge coatings[J]. Chemical Engineering Journal, 2024, 501: 157731. |
| [17] | El-Nahhal I M, El-Ashgar N M. A review on polysiloxane-immobilized ligand systems: synthesis, characterization and applications[J]. Journal of Organometallic Chemistry, 2007, 692(14): 2861-2886. |
| [18] | Pandarus V, Ciriminna R, Gingras G, et al. Waste-free and efficient hydrosilylation of olefins[J]. Green Chemistry, 2019, 21(1): 129-140. |
| [19] | Xu J Y, Han S S. The polyetherification modified reaction on silicone oil[J]. Advanced Materials Research, 2012, 560/561: 667-671. |
| [20] | Xue L, Wang D X, Yang Z Z, et al. Facile, versatile and efficient synthesis of functional polysiloxanes via thiol-ene chemistry[J]. European Polymer Journal, 2013, 49(5): 1050-1056. |
| [21] | Wu X, Yu D F, Yang H, et al. Self-assembly phenomena of the brush-like amphiphilic organopolysiloxanes in aqueous solution[J]. Polymers for Advanced Technologies, 2014, 25(10): 1175-1180. |
| [22] | Zhao H X, Sun Q Q, Deng X, et al. Earthworm-inspired rough polymer coatings with self-replenishing lubrication for adaptive friction-reduction and antifouling surfaces[J]. Advanced Materials, 2018, 30(29): 1802141. |
| [23] | Wang L, Li B Q, Xu F, et al. UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery[J]. Carbohydrate Polymers, 2017, 174: 904-914. |
| [24] | Szaloki M, Gall J, Bukovinszki K, et al. Synthesis and characterization of cross-linked polymeric nanoparticles and their composites for reinforcement of photocurable dental resin[J]. Reactive and Functional Polymers, 2013, 73(3): 465-473. |
| [25] | Guterman R, Gillies E R, Ragogna P J. Kinetically controlled patterning of highly cross-linked phosphonium photopolymers using simple anion exchange[J]. Langmuir, 2015, 31(18): 5181-5189. |
| [26] | Hughes T, Simon G P, Saito K. Chemistries and capabilities of photo-formable and photoreversible crosslinked polymer networks[J]. Materials Horizons, 2019, 6(9): 1762-1773. |
| [27] | Liu H, Huang Y W, Zhang Y D, et al. A UV-curable silicone acrylate anti-smudge coating containing tertiary amines and Ti with the ability to prevent oxygen inhibition[J]. Progress in Organic Coatings, 2024, 195: 108686. |
| [28] | Howell C, Grinthal A, Sunny S, et al. Designing liquid-infused surfaces for medical applications: a review[J]. Advanced Materials, 2018, 30(50): 1802724. |
| [29] | Wang L J, Mutch K J, Eastoe J, et al. Nanoemulsions prepared by a two-step low-energy process[J]. Langmuir, 2008, 24(12): 6092-6099. |
| [30] | Jing J H, Li X J, Zhang Y, et al. pH-responsive regulation of a surfactant-free microemulsion based on hydrophobic deep eutectic solvents[J]. Langmuir, 2022, 38(26): 7898-7905. |
| [31] | Cao C Y, Hou C S, Wang X, et al. Liquid metal-enhanced highly adhesive electrodes for multifunctional epidermal bioelectronics[J]. Advanced Functional Materials, 2024, 34(40): 2403671. |
| [32] | Xu X B, Chen Y T, Li Y L, et al. Dynamic silicone hydrogel gauze coatings with dual anti-blood adhesion mechanism for rapid hemostasis and minimal secondary damage[J]. Science Advances, 2024, 10(49): ado4944. |
| [33] | Badv M, Weitz J I, Didar T F. Lubricant-infused PET grafts with built-In biofunctional nanoprobes attenuate thrombin generation and promote targeted binding of cells[J]. Small, 2019, 15(51): 1905562. |
| [34] | Gao X F, Jiang L. Water-repellent legs of water striders[J]. Nature, 2004, 432: 36. |
| [35] | Gao X, Yan X, Yao X, et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography[J]. Advanced Materials, 2007, 19(17): 2213-2217. |
| [36] | Epstein A K, Pokroy B, Seminara A, et al. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(3): 995-1000. |
| [37] | Tuteja A, Choi W, Ma M L, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622. |
| [38] | Tuteja A, Choi W, Mabry J M, et al. Robust omniphobic surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18200-18205. |
| [39] | Ahuja A, Taylor J A, Lifton V, et al. Nanonails: a simple geometrical approach to electrically tunable superlyophobic surfaces[J]. Langmuir, 2008, 24(1): 9-14. |
| [40] | Li Y, Li L, Sun J Q. Bioinspired self-healing superhydrophobic coatings[J]. Angewandte Chemie International Edition, 2010, 49(35): 6129-6133. |
| [41] | Yao X, Dunn S S, Kim P, et al. Fluorogel elastomers with tunable transparency, elasticity, shape-memory, and antifouling properties[J]. Angewandte Chemie International Edition, 2014, 53(17): 4418-4422. |
| [42] | 杨琴, 秦传鉴, 李明梓, 等. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
| Yang Q, Qin C J, Li M Z, et al. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor[J]. CIESC Journal, 2023, 74(6): 2699-2707. |
| [1] | Xianghai LI, Delin LAI, Gang KONG, Jian ZHOU. Molecular dynamics simulations on synergistic underwater oleophobicity mechanism of dual-biomimic surfaces [J]. CIESC Journal, 2025, 76(9): 4551-4562. |
| [2] | Zhuolong LIU, Yunhua GAN, Keyang QU, Ningguang CHEN, Minghui PAN. Research on the effect of uniform electric field on characteristics of biodiesel small-scale jet diffusion combustion [J]. CIESC Journal, 2025, 76(9): 4800-4808. |
| [3] | Xinhuang YE, Jiahao XUE, Yulai ZHAO. Synthesis and characterization of polymerizable Gemini surfactants: stabilization of high internal phase emulsion [J]. CIESC Journal, 2025, 76(8): 4331-4340. |
| [4] | Yufeng WANG, Xiaoxue LUO, Hongliang FAN, Baijing WU, Cunpu LI, Zidong WEI. Green organic electrosynthesis coupled with water electrolysis to produce hydrogen—overview of electrode interface regulation strategies [J]. CIESC Journal, 2025, 76(8): 3753-3771. |
| [5] | Zhengzheng GUO, Yidan ZHAO, Fuqiang WANG, Lu PEI, Yanling JIN, Fang REN, Penggang REN. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture [J]. CIESC Journal, 2025, 76(7): 3719-3732. |
| [6] | Liang GUO, Ye CHEN, Qiming JIA, Xiujuan XIE. Simulated and experimental investigations on self-pressurization of liquid helium storage tank [J]. CIESC Journal, 2025, 76(7): 3561-3571. |
| [7] | Feng LIU, Chunshuo HAN, Yi ZHANG, Yancheng LIU, Linjun YU, Jiawei SHEN, Xiaoquan GAO, Kai YANG. Micro-mechanism study on the effect of single and double hydrocarbon chain surfactants on oil-water interface properties under high temperature and high salt reservoir [J]. CIESC Journal, 2025, 76(6): 2939-2957. |
| [8] | Changyu LI, Qiang ZENG, Jie XIAO, Yangjie ZHANG, zheng ZHANG, Yuanhua LIN. Study on interface modification of LATP-based solid electrolyte membrane by PVDF [J]. CIESC Journal, 2025, 76(6): 2974-2982. |
| [9] | Sanlong WANG, Yuelin WANG, Yu CAO. Research on the performance of inorganic perovskite solar cells based on phase heterojunction [J]. CIESC Journal, 2025, 76(3): 1346-1352. |
| [10] | Guipei XU, Qian SUN, Jiewen LAI, Yifeng LU, Huifang DI, Hui HUANG, Zhenbing WANG. Research progress on failure mechanism of electrochemical double layer capacitors [J]. CIESC Journal, 2025, 76(3): 951-962. |
| [11] | Wenbao LI, Jinpeng HU, Miao DU, Pengju PAN, Guorong SHAN. High strength and toughness P(SBMA-co-AAc)/SiO2 composite hydrogel marine antifouling and drag-reducing coating [J]. CIESC Journal, 2025, 76(2): 787-796. |
| [12] | Yuxuan WU, Cheng CHANG, Xueping GU, Lianfang FENG, Cailiang ZHANG. Modeling of butadiene emulsion polymerization process for stereoisomerization [J]. CIESC Journal, 2025, 76(2): 879-887. |
| [13] | Heng ZHANG, Dianlu KUI, Hong CHANG, Zhigang ZHAN. Effect of mechanical stress on the interfacial transport properties of gas diffusion layers [J]. CIESC Journal, 2025, 76(2): 637-644. |
| [14] | Wei ZHOU, Zhiqian WU, Yapeng QIAO, Xinyu XIE, Feifei YANG. Efficient catalytic hydrodeoxygenation of lignin derived phenolics on Ni-VO x interface [J]. CIESC Journal, 2025, 76(12): 6366-6375. |
| [15] | Menghan WANG, Miao YU, Tong WU. Research progress of electrolyte for lithium-sulfur batteries: molecular design and application [J]. CIESC Journal, 2025, 76(12): 6196-6217. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||