CIESC Journal ›› 2025, Vol. 76 ›› Issue (10): 5362-5371.DOI: 10.11949/0438-1157.20250434
• Energy and environmental engineering • Previous Articles Next Articles
Kai LI1,2(
), Huan WANG2, Liyuan YIN2, Lulu NIU2, Yang LIU2, Weimin YANG1, Ying AN1(
)
Received:2025-04-23
Revised:2025-07-02
Online:2025-11-25
Published:2025-10-25
Contact:
Ying AN
李凯1,2(
), 王欢2, 尹丽媛2, 牛璐璐2, 刘洋2, 杨卫民1, 安瑛1(
)
通讯作者:
安瑛
作者简介:李凯(1998—),男,硕士研究生,助理工程师,13834742296@163.com
基金资助:CLC Number:
Kai LI, Huan WANG, Liyuan YIN, Lulu NIU, Yang LIU, Weimin YANG, Ying AN. Investigation on photothermal properties of water-based carbon black nanofluids[J]. CIESC Journal, 2025, 76(10): 5362-5371.
李凯, 王欢, 尹丽媛, 牛璐璐, 刘洋, 杨卫民, 安瑛. 水基炭黑纳米流体光热性能研究[J]. 化工学报, 2025, 76(10): 5362-5371.
Add to citation manager EndNote|Ris|BibTeX
| 炭黑浓度/%(质量分数) | 胶原蛋白浓度/%(质量分数) |
|---|---|
0.001 0.003 0.005 0.007 0.009 0.015 0.02 | 0.02 0.06 0.1 0.14 0.18 0.3 0.4 |
Table 1 Different concentration nanofluids
| 炭黑浓度/%(质量分数) | 胶原蛋白浓度/%(质量分数) |
|---|---|
0.001 0.003 0.005 0.007 0.009 0.015 0.02 | 0.02 0.06 0.1 0.14 0.18 0.3 0.4 |
| [1] | Barkaoui A E, Boldyryev S, Duic N, et al. Appropriate integration of geothermal energy sources by pinch approach: case study of Croatia[J]. Applied Energy, 2016, 184: 1343-1349. |
| [2] | Mussard M. Solar energy under cold climatic conditions: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 733-745. |
| [3] | Shah T R, Ali H M. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review[J]. Solar Energy, 2019, 183: 173-203. |
| [4] | Gorji T B, Ranjbar A A. A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs)[J]. Renewable and Sustainable Energy Reviews, 2017,7 2: 10-32. |
| [5] | Otanicar T P, Phelan P E, Golden J S. Optical properties of liquids for direct absorption solar thermal energy systems[J]. Solar Energy, 2009, 83(7): 969-977. |
| [6] | 程波, 杜垲, 张小松, 等. 氨水-纳米炭黑纳米流体的稳定性[J]. 化工学报, 2008, 59(S2): 49-52. |
| Cheng B, Du K, Zhang X S, et al. Stability of ammonia-nano-carbon black nanofluid[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(S2): 49-52. | |
| [7] | Sajid M, Ali H. Thermal conductivity of hybrid nanofluids: a critical review[J]. International Journal of Heat and Mass Transfer, 2018, 126: 211-234. |
| [8] | Zhang R H, Zhang X H, Qing S, et al. Investigation of nanoparticles shape that influence the thermal conductivity and viscosity in argon-based nanofluids: a molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer, 2023, 207: 124031. |
| [9] | Mahbubul I M, Saidur R, Amalina M A. Latest developments on the viscosity of nanofluids[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 874-885. |
| [10] | Luo Z Y, Wang C, Wei W, et al. Performance improvement of a nanofluid solar collector based on direct absorption collection (DAC) concepts[J]. International Journal of Heat and Mass Transfer, 2014, 75: 262-271. |
| [11] | Taylor R A, Phelan P E, Otanicar T P, et al. Nanofluid optical property characterization: towards efficient direct absorption solar collectors[J]. Nanoscale Research Letters, 2011, 6(1): 225. |
| [12] | Yousefi T, Veysi F, Shojaeizadeh E, et al. An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors[J]. Renewable Energy, 2012, 39(1): 293-298. |
| [13] | Karami M, Akhavan Bahabadi M A, Delfani S, et al. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector[J]. Solar Energy Materials and Solar Cells, 2014, 121: 114-118. |
| [14] | Ladjevardi S M, Asnaghi A, Izadkhast P S, et al. Applicability of graphite nanofluids in direct solar energy absorption[J]. Solar Energy, 2013, 94: 327-334. |
| [15] | Rodríguez- Lorenzo L, Romo-Herrera J M, Pérez-Juste J, et al. Reshaping and LSPR tuning of Au nanostars in the presence of CTAB[J]. Journal of Materials Chemistry, 2011, 21(31): 11544-11549. |
| [16] | Simonetti M, Restagno F, Sani E, et al. Numerical investigation of direct absorption solar collectors (DASC), based on carbon-nanohorn nanofluids, for low temperature applications[J]. Solar Energy, 2020, 195: 166-175. |
| [17] | 徐国英, 李凌志, 张小松, 等. 添加不同纳米颗粒的导热油直接吸收集热实验性能[J]. 化工学报, 2014, 65(S2): 293-298. |
| Xu G Y, Li L Z, Zhang X S, et al. Experimental performance of direct absorption and heat collection of heat transfer oil with different nanoparticles[J]. CIESC Journal, 2014, 65(S2): 293-298. | |
| [18] | Delfani S, Karami M, Akhavan-Behabadi M A. Performance characteristics of a residential-type direct absorption solar collector using MWCNT nanofluid[J]. Renewable Energy, 2016, 87: 754-764. |
| [19] | Qu J, Tian M, Han X Y, et al. Photo-thermal conversion characteristics of MWCNT-H2O nanofluids for direct solar thermal energy absorption applications[J]. Applied Thermal Engineering, 2017, 124: 486-493. |
| [20] | Jin H C, Lin G P, Bai L Z, et al. Photothermal conversion efficiency of nanofluids: an experimental and numerical study[J]. Solar Energy, 2016, 139: 278-289. |
| [21] | Kumar S, Sharma V, Samantaray M R, et al. Experimental investigation of a direct absorption solar collector using ultra stable gold plasmonic nanofluid under real outdoor conditions[J]. Renewable Energy, 2020, 162: 1958-1969. |
| [22] | Zhu G H, Wang L L, Bing N C, et al. Enhancement of photothermal conversion performance using nanofluids based on bimetallic Ag-Au alloys in nitrogen-doped graphitic polyhedrons[J]. Energy, 2019, 183: 747-755. |
| [23] | Bandarra Filho E P, Mendoza O S H, Beicker C L L, et al. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system[J]. Energy Conversion and Management, 2014, 84: 261-267. |
| [24] | Wang Y X, Zou C J, Li W J, et al. Improving stability and thermal properties of TiO2 nanofluids by supramolecular modification: high energy efficiency heat transfer medium for data center cooling system[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119735. |
| [25] | Yu J, Zhu D, Qi C, et al. Photothermal characteristic and evaporation efficiency of core-shell Ag@Fe3O4 nanofluids[J]. Powder Technology, 2023, 422: 118464. |
| [26] | Celata G P, D'Annibale F, Mariani A, et al. Experimental results of nanofluids flow effects on metal surfaces[J]. Chemical Engineering Research and Design, 2014, 92(9): 1616-1628. |
| [27] | Zhou J Y, Li X K, Chen W J, et al. Investigation on the photothermal performance of carbon quantum dots nanofluid with high-stability[J]. Diamond and Related Materials, 2022, 128: 109233. |
| [28] | Mokoloko L L, Matsoso B J, Forbes R P, et al. Evolution of large-area reduced graphene oxide nanosheets from carbon dots via thermal treatment[J]. Carbon Trends, 2021, 4: 100074. |
| [29] | Sadegh Hosseini S M, Dehaj M S. An experimental study on energetic performance evaluation of a parabolic trough solar collector operating with Al2O3/water and GO/water nanofluids[J]. Energy, 2021, 234: 121317. |
| [30] | He Q B, Wang S F, Zeng S Q, et al. Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems[J]. Energy Conversion and Management, 2013, 73: 150-157. |
| [31] | Gao J Q, Yu W, Xie H Q, et al. Graphene-based deep eutectic solvent nanofluids with high photothermal conversion and high-grade energy[J]. Renewable Energy, 2022, 190: 935-944. |
| [32] | Zeiny A, Jin H C, Bai L Z, et al. A comparative study of direct absorption nanofluids for solar thermal applications[J]. Solar Energy, 2018, 161: 74-82. |
| [33] | Han D, Meng Z, Wu D, et al. Thermal properties of carbon black aqueous nanofluids for solar absorption[J]. Nanoscale Research Letters, 2011, 6(1): 457. |
| [34] | Han D X, Meng Z G, Wu D X, et al. Investigations on optical and photo-thermal conversion characteristics of BN-EG and BN/CB-EG hybrid nanofluids for applications in direct absorption solar collectors[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111245. |
| [35] | Wang H, Yang W M, Cheng L S, et al. Chinese ink: high performance nanofluids for solar energy[J]. Solar Energy Materials and Solar Cells, 2018, 176: 374-380. |
| [36] | 李凯, 魏鹤琳, 左夏华, 等. 水基炭黑-胶原蛋白纳米流体制备及稳定性实验研究[J]. 化工进展, 2024, 43(4): 1944-1952. |
| Li K, Wei H L, Zuo X H, et al. Preparation and stability of water-based carbon black-collagen nanofluids[J]. Chemical Industry Progress, 2024, 43(4): 1944-1952. | |
| [37] | Hadadian M, Goharshadi E K, Youssefi A. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids[J]. Journal of Nanoparticle Research, 2014, 16(12): 2788. |
| [1] | Xin XIAO, Geng YANG, Yunfeng WANG. Simulation of solar heat pump system integration of cascade latent heat thermal energy storage based on TRNSYS [J]. CIESC Journal, 2025, 76(S1): 393-400. |
| [2] | Cong QI, Linfei YUE. Heat transfer characteristics of interwoven network minichannel heat sinks [J]. CIESC Journal, 2025, 76(4): 1534-1544. |
| [3] | Shuli LIU, Wenhao ZHOU, Shaoliang ZHANG, Yongliang SHEN. Heat release performance of direct absorption/storage solar collector [J]. CIESC Journal, 2025, 76(4): 1722-1730. |
| [4] | Fengshi XU, Lisheng CHENG, Xiahua ZUO, Xiaoyu YU, Hua YAN, Weimin YANG, Ying AN. Simulation study on the photothermal conversion performance of water-based carbon black nanofluid under swirling flow [J]. CIESC Journal, 2025, 76(4): 1523-1533. |
| [5] | Sanlong WANG, Yuelin WANG, Yu CAO. Research on the performance of inorganic perovskite solar cells based on phase heterojunction [J]. CIESC Journal, 2025, 76(3): 1346-1352. |
| [6] | Ping LIU, Yusheng QIU, Shijing LI, Ruiqi SUN, Chen SHEN. Heat transfer and flow characteristics of nanofluids in microchannels [J]. CIESC Journal, 2025, 76(1): 184-197. |
| [7] | Lingya YUAN, Ying ZHANG. The growth of PV sector in China and its implications for the resource and environmental sustainability [J]. CIESC Journal, 2024, 75(S1): 14-24. |
| [8] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
| [9] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
| [10] | Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes [J]. CIESC Journal, 2024, 75(3): 1052-1064. |
| [11] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
| [12] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
| [13] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
| [14] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
| [15] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||