CIESC Journal ›› 2025, Vol. 76 ›› Issue (4): 1523-1533.DOI: 10.11949/0438-1157.20240877
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Fengshi XU1(), Lisheng CHENG1, Xiahua ZUO2, Xiaoyu YU1, Hua YAN1, Weimin YANG1, Ying AN1(
)
Received:
2024-08-02
Revised:
2024-09-28
Online:
2025-05-12
Published:
2025-04-25
Contact:
Ying AN
徐逢时1(), 程礼盛1, 左夏华2, 于晓宇1, 阎华1, 杨卫民1, 安瑛1(
)
通讯作者:
安瑛
作者简介:
徐逢时(2000—),男,硕士研究生,xfs2022lucky@163.com
基金资助:
CLC Number:
Fengshi XU, Lisheng CHENG, Xiahua ZUO, Xiaoyu YU, Hua YAN, Weimin YANG, Ying AN. Simulation study on the photothermal conversion performance of water-based carbon black nanofluid under swirling flow[J]. CIESC Journal, 2025, 76(4): 1523-1533.
徐逢时, 程礼盛, 左夏华, 于晓宇, 阎华, 杨卫民, 安瑛. 旋流作用下水基炭黑纳米流体光热转换性能模拟研究[J]. 化工学报, 2025, 76(4): 1523-1533.
转子类型 | 叶片数量m/个 | 外径D/mm | 长度l/mm | 螺距p/mm |
---|---|---|---|---|
螺旋两叶片转子 | 2 | 22 | 27.5 | 200 |
Table 1 Structural parameters of the rotor
转子类型 | 叶片数量m/个 | 外径D/mm | 长度l/mm | 螺距p/mm |
---|---|---|---|---|
螺旋两叶片转子 | 2 | 22 | 27.5 | 200 |
质量分数ω/% | 密度ρ/ (kg∙m-3) | 黏度μ/ (kg∙m-1∙s-1) | 热导率K/ (W∙m-1∙K-1) | 比热容c/ (J∙g-1∙K-1) |
---|---|---|---|---|
0.001 | 993.40 | 0.87 | 0.613 | 4.212 |
0.003 | 993.41 | 0.92 | 0.614 | 4.210 |
0.005 | 993.41 | 0.96 | 0.616 | 4.207 |
0.008 | 993.42 | 1.00 | 0.617 | 4.204 |
0.010 | 993.42 | 1.03 | 0.621 | 4.202 |
Table 2 Thermophysical property parameters of water-based carbon black nanofluids
质量分数ω/% | 密度ρ/ (kg∙m-3) | 黏度μ/ (kg∙m-1∙s-1) | 热导率K/ (W∙m-1∙K-1) | 比热容c/ (J∙g-1∙K-1) |
---|---|---|---|---|
0.001 | 993.40 | 0.87 | 0.613 | 4.212 |
0.003 | 993.41 | 0.92 | 0.614 | 4.210 |
0.005 | 993.41 | 0.96 | 0.616 | 4.207 |
0.008 | 993.42 | 1.00 | 0.617 | 4.204 |
0.010 | 993.42 | 1.03 | 0.621 | 4.202 |
1 | 向娇娇, 樊莎, 高达利, 等. 光热转换用碳基材料的制备及应用进展[J]. 浙江理工大学学报(自然科学版), 2023, 48(1): 33-42. |
Xiang J J, Fan S, Gao D L, et al. Progress in preparation and application of carbon-based materials for photothermal conversion[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2023, 48(1): 33-42. | |
2 | Hussain M, Shah S K H, Sajjad U, et al. Recent developments in optical and thermal performance of direct absorption solar collectors[J]. Energies, 2022, 15(19): 7101. |
3 | Hasan A, Alazzam A, Abu-Nada E. Direct absorption solar collectors: fundamentals, modeling approaches, design and operating parameters, advances, knowledge gaps, and future prospects[J]. Progress in Energy and Combustion Science, 2024, 103: 101160. |
4 | Raj P, Subudhi S. A review of studies using nanofluids in flat-plate and direct absorption solar collectors[J]. Renewable and Sustainable Energy Reviews, 2018, 84: 54-74. |
5 | Tembhare S P, Barai D P, Bhanvase B A. Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2022, 153: 111738. |
6 | Sainz-Mañas M, Bataille F, Caliot C, et al. Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review[J]. Energy, 2022, 260: 124916. |
7 | Wang Q R, Yang L, Zhao N, et al. A review of applications of plasmonic and conventional nanofluids in solar heat collection[J]. Applied Thermal Engineering, 2023, 219: 119476. |
8 | Moghaieb H S, Amendola V, Khalil S, et al. Nanofluids for direct-absorption solar collectors—DASCs: a review on recent progress and future perspectives[J]. Nanomaterials, 2023, 13(7): 1232. |
9 | 左夏华, 宋立健, 关昌峰, 等. 用于直接吸收式太阳能集热器的纳米流体研究进展[J]. 材料导报, 2023, 37(21): 29-37. |
Zuo X H, Song L J, Guan C F, et al. Review of application on nanofluids for direct absorption solar collectors[J]. Materials Reports, 2023, 37(21): 29-37. | |
10 | Zhu W L, Zuo X H, Ding Y M, et al. Experimental investigation on the photothermal conversion performance of cuttlefish ink nanofluids for direct absorption solar collectors[J]. Applied Thermal Engineering, 2023, 221: 119835. |
11 | Zuo X H, Yang W M, Shi M N, et al. Experimental investigation on photothermal conversion properties of lampblack ink nanofluids[J]. Solar Energy, 2021, 218: 1-10. |
12 | Zuo X H, Yang W M, Zhang Z H, et al. Experimental investigation on photothermal conversion properties of collagen solution-based carbon black nanofluid[J]. Case Studies in Thermal Engineering, 2022, 38: 102371. |
13 | Beicker C L L, Amjad M, Bandarra Filho E P, et al. Experimental study of photothermal conversion using gold/water and MWCNT/water nanofluids[J]. Solar Energy Materials and Solar Cells, 2018, 188: 51-65. |
14 | Bao Y Q, Luo Q L, Zheng X, et al. Hydroxyl functionalized MWCNT nanofluids with excellent photothermal conversion performance in direct absorption solar collectors[J]. Diamond and Related Materials, 2023, 140: 110489. |
15 | Mehrali M, Ghatkesar M K, Pecnik R. Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids[J]. Applied Energy, 2018, 224: 103-115. |
16 | Wen J, Chang Q C, Zhu J S, et al. The enhanced photothermal characteristics of plasmonic ZrC/TiN composite nanofluids for direct absorption solar collectors[J]. Renewable Energy, 2023, 206: 676-685. |
17 | Bao Y Q, Huang A, Zheng X, et al. Enhanced photothermal conversion performance of MWCNT/SiC hybrid aqueous nanofluids in direct absorption solar collectors[J]. Journal of Molecular Liquids, 2023, 387: 122577. |
18 | Gorji T B, Ranjbar A A. Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology[J]. Solar Energy, 2015, 122: 314-325. |
19 | Chen M J, He Y R, Zhu J Q, et al. Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors[J]. Applied Energy, 2016, 181: 65-74. |
20 | Li X L, Chang H W, Zeng L J, et al. Numerical analysis of photothermal conversion performance of MXene nanofluid in direct absorption solar collectors[J]. Energy Conversion and Management, 2020, 226: 113515. |
21 | 于晓宇, 安瑛, 左夏华, 等. 旋流作用下水基炭黑纳米流体集热性能研究[J]. 化工学报, 2023, 74(10): 4097-4108. |
Yu X Y, An Y, Zuo X H, et al. Study on the heat collection performance of water-based carbon black nanofluid under swirling flow[J]. CIESC Journal, 2023, 74(10): 4097-4108. | |
22 | Joo H J, Kwak H Y, Kong M. Effect of twisted tape inserts on thermal performance of heat pipe evacuated-tube solar thermal collector[J]. Energy, 2022, 254: 124307. |
23 | García A, Martin R H, Pérez-García J. Experimental study of heat transfer enhancement in a flat-plate solar water collector with wire-coil inserts[J]. Applied Thermal Engineering, 2013, 61(2): 461-468. |
24 | Sundar L S, Singh M K, Punnaiah V, et al. Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts[J]. Renewable Energy, 2018, 119: 820-833. |
25 | Zhou L Q, Yang W L, Li C J, et al. Performance evaluation and parameter optimization of tubular direct absorption solar collector with photothermal nanofluid[J]. Applied Thermal Engineering, 2024, 246: 122955. |
26 | Bozorgi M, Ghasemi K, Mohaghegh M R, et al. Optimization of silver/water-based porous wavy direct absorption solar collector[J]. Renewable Energy, 2023, 202: 1387-1401. |
27 | Struchalin P G, Yunin V S, Kutsenko K V, et al. Performance of a tubular direct absorption solar collector with a carbon-based nanofluid[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121717. |
28 | Elghobashi S. On predicting particle-laden turbulent flows[J]. Applied Scientific Research, 1994, 52(4): 309-329. |
29 | Crowe C T, Schwarzkopf J D, Sommerfeld M, et al. Multiphase Flows with Droplets and Particles[M]. Boca Raton: CRC Press, 1997. |
30 | 张一帆. 非均匀纳米流体辐射特性研究[D]. 大庆: 东北石油大学, 2019. |
Zhang Y F. Study on radiation characteristics of non-uniform nanofluids[D]. Daqing: Northeast Petroleum University, 2019. | |
31 | Thakur A. Development and usability of solar thermal collectors in different fields: an overview[J]. Materials Today: Proceedings, 2021, 46: 6644-6649. |
32 | 李国柱, 王帅, 黄凯良, 等. 太阳能集热器种类与集热性能提升技术研究进展[J]. 科技导报, 2022, 40(24): 50-63. |
Li G Z, Wang S, Huang K L, et al. Research status of solar collector types and their thermal performance enhancement technologies[J]. Science & Technology Review, 2022, 40(24): 50-63. |
[1] | Cong QI, Linfei YUE. Heat transfer characteristics of interwoven network minichannel heat sinks [J]. CIESC Journal, 2025, 76(4): 1534-1544. |
[2] | Ping LIU, Yusheng QIU, Shijing LI, Ruiqi SUN, Chen SHEN. Heat transfer and flow characteristics of nanofluids in microchannels [J]. CIESC Journal, 2025, 76(1): 184-197. |
[3] | Jiaqi WANG, Haoqi WEI, Ajing GOU, Jiaxing LIU, Xinlin ZHOU, Kun GE. Study on the formation mechanism of CO2 hydrate under the action of nanoparticles [J]. CIESC Journal, 2024, 75(3): 956-966. |
[4] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[5] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[6] | Mengqi PENG, Tao ZHANG, Maosheng LI, Zhengrong SHI, Jingyong CAI. Study on preparation and thermoelectric regulation performance of water-ZnO nanofluids for spectral-beam splitting [J]. CIESC Journal, 2023, 74(12): 5027-5037. |
[7] | Jianfei SONG, Liqiang SUN, Ming XIE, Yaodong WEI. Experimental study of instability of gas-phase swirling flow in cyclone [J]. CIESC Journal, 2022, 73(7): 2858-2864. |
[8] | Shuai YAN, Haiping YANG, Yingquan CHEN, Xianhua WANG, Kuo ZENG, Hanping CHEN. Recent advances in photothermal catalysis of CO2 reduction [J]. CIESC Journal, 2022, 73(10): 4298-4310. |
[9] | XIONG Yaxuan, QIAN Xiangyao, LI Shuo, SUN Mingyuan, WANG Zhenyu, WU Yuting, XU Peng, DING Yulong, MA Chongfang. Effect of preparation methods on thermal energy storage performance and formation mechanism of molten salt nanofluids [J]. CIESC Journal, 2021, 72(5): 2857-2868. |
[10] | QI Cong, LI Ke'ao, LI Chunyang. Influence of micro-rib structures on thermal performance of nanofluids flowing around circular cylinders [J]. CIESC Journal, 2021, 72(4): 2006-2017. |
[11] | LIU Changhui, LIU Hongli, ZHANG Tianjian, RAO Zhonghao. Preparation and thermal physical properties of nanofluids based on a urea/choline chloride deep eutectic solvent system [J]. CIESC Journal, 2021, 72(3): 1333-1341. |
[12] | Changhui LIU,Haiyue ZHANG,Yemei LI,Tianjian ZHANG,Yanlong GU. Recent advances of deep eutectic solvents in energy storage and heat transfer [J]. CIESC Journal, 2021, 72(10): 4973-4986. |
[13] | Dongmin TIAN, Yanpeng WU, Fengjun CHEN. Analysis of heat transfer performance of copper-water heat pipe based on nano enhanced-PCM [J]. CIESC Journal, 2020, 71(S1): 220-226. |
[14] | Fuheng LI. Investigation on photothermal conversion characteristics of graphene nanosheets-glycol nanofluids [J]. CIESC Journal, 2020, 71(S1): 479-485. |
[15] | Zhongmin LANG, Gangqiang WU, Wenxiu HE, Xiaoxing HAN, Yanmeng GOU, Shuangying LI. Pool boiling heat transfer characteristics of CeO2/deionized water nanofluids [J]. CIESC Journal, 2020, 71(5): 2061-2068. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 254
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 85
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||