CIESC Journal ›› 2025, Vol. 76 ›› Issue (9): 4412-4424.DOI: 10.11949/0438-1157.20250599
• Special Column: Modeling and Simulation in Process Engineering • Previous Articles Next Articles
Shuai ZHANG1(
), Jiayu XU1,2, Leina HUA1, Wei GE1,2(
)
Received:2025-06-04
Revised:2025-07-15
Online:2025-10-23
Published:2025-09-25
Contact:
Wei GE
通讯作者:
葛蔚
作者简介:张帅(1994—),男,博士,助理研究员,zhangshuai17@ipe.ac.cn
基金资助:CLC Number:
Shuai ZHANG, Jiayu XU, Leina HUA, Wei GE. Coupled simulation method of CG-DPM and MP-PIC for gas-solid system[J]. CIESC Journal, 2025, 76(9): 4412-4424.
张帅, 徐嘉宇, 华蕾娜, 葛蔚. 气固系统的CG-DPM与MP-PIC耦合模拟方法[J]. 化工学报, 2025, 76(9): 4412-4424.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 数值 |
|---|---|
| 计算域尺寸/m3 | 0.025×0.28×1.0 |
| CFD网格数 | 4×45×160 |
| 气相密度 | 1.225 |
| 气相黏度 | 1.8×10-5 |
| 气速 | 0.03, 0.10, 0.38, 0.46, 0.51 |
| CFD时间步长 | 5×10-4 |
| 真实颗粒粒径 | 2.75×10-4 |
| 粗化率(粗粒化倍数)a | 10 |
| 粗颗粒内部空隙率 | 0.4 |
| 颗粒密度 | 2500 |
| 杨氏模量Y/(N/m2) | 5×107 |
| 恢复系数er | 0.9 |
| 滑动摩擦系数 | 0.1 |
| DEM/PIC时间步长 | 5×10-5 |
| 模拟总时长/s | 30 |
| 统计时间/s | 5~30 |
Table 1 Simulation parameters
| 参数 | 数值 |
|---|---|
| 计算域尺寸/m3 | 0.025×0.28×1.0 |
| CFD网格数 | 4×45×160 |
| 气相密度 | 1.225 |
| 气相黏度 | 1.8×10-5 |
| 气速 | 0.03, 0.10, 0.38, 0.46, 0.51 |
| CFD时间步长 | 5×10-4 |
| 真实颗粒粒径 | 2.75×10-4 |
| 粗化率(粗粒化倍数)a | 10 |
| 粗颗粒内部空隙率 | 0.4 |
| 颗粒密度 | 2500 |
| 杨氏模量Y/(N/m2) | 5×107 |
| 恢复系数er | 0.9 |
| 滑动摩擦系数 | 0.1 |
| DEM/PIC时间步长 | 5×10-5 |
| 模拟总时长/s | 30 |
| 统计时间/s | 5~30 |
| 数据来源 | 鼓泡频率/Hz |
|---|---|
| 实验 | 1.8 |
| TFM | 2.2 |
| CG-DPM | 1.6 |
| Coupled | 1.8 |
Table 2 Comparison of bubbling frequency at bed height of 0.2 m between experiment and simulation
| 数据来源 | 鼓泡频率/Hz |
|---|---|
| 实验 | 1.8 |
| TFM | 2.2 |
| CG-DPM | 1.6 |
| Coupled | 1.8 |
| [1] | 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2008. |
| Guo M S, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2008. | |
| [2] | 金涌, 祝京旭, 汪展文, 等. 流态化工程原理[M]. 北京: 清华大学出版社, 2001. |
| Jin Y, Zhu J X, Wang Z W, et al. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001. | |
| [3] | Anderson T B, Jackson R. Fluid mechanical description of fluidized beds. Equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539. |
| [4] | Gidaspow D. Multiphase Flow and Fluidization: Continue and Kinetic Theory Description[M]. San Diego: Academic Press, 1994. |
| [5] | Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992, 71(3): 239-250. |
| [6] | Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87. |
| [7] | Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds: kinetic theory approach[C]//Fluidization VII: Proceedings of the Seventh Engineering Foundation Conference on Fluidization. Brisbane, 1992. |
| [8] | Hu H H, Joseph D D, Crochet M J. Direct simulation of fluid particle motions[J]. Theoretical and Computational Fluid Dynamics, 1992, 3(5): 285-306. |
| [9] | Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation (Part 1): Theoretical foundation[J]. Journal of Fluid Mechanics, 1994, 271: 285-309. |
| [10] | Liu X C, Xu J, Ge W, et al. Long-time simulation of catalytic MTO reaction in a fluidized bed reactor with a coarse-grained discrete particle method—EMMS-DPM[J]. Chemical Engineering Journal, 2020, 389: 124135. |
| [11] | Ye Y H, Zhang S, Xu J, et al. 3D coarse-grained DPM simulation of the MIP reaction-regeneration loop[J]. Particuology, 2024, 89: 57-66. |
| [12] | Zhou Z Y, Kuang S B, Chu K W, et al. Discrete particle simulation of particle-fluid flow: model formulations and their applicability[J]. Journal of Fluid Mechanics, 2010, 661: 482-510. |
| [13] | Ge W, Wang L M, Xu J, et al. Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application[J]. Reviews in Chemical Engineering, 33(6): 551-623. |
| [14] | Zhang S, Ge W. Accelerating discrete particle simulation of particle-fluid systems[J]. Current Opinion in Chemical Engineering, 2024, 43: 100989. |
| [15] | Sakai M, Koshizuka S. Large-scale discrete element modeling in pneumatic conveying[J]. Chemical Engineering Science, 2009, 64(3): 533-539. |
| [16] | Andrews M J, O'Rourke P J. The multiphase particle-in-cell (MP-PIC) method for dense particulate flows[J]. International Journal of Multiphase Flow, 1996, 22(2): 379-402. |
| [17] | Di Renzo A, Napolitano E S, Di Maio F P. Coarse-grain DEM modelling in fluidized bed simulation: a review[J]. Processes, 2021, 9(2): 279. |
| [18] | Chen X Z, Wang J W. Mesoscale-structure-based dynamic multiscale method for gas-solid flow[J]. Chemical Engineering Science, 2018, 192: 864-881. |
| [19] | Zhang S, Ge W, Liu C J. Spatial-temporal multiscale discrete-continuum simulation of granular flow[J]. Physics of Fluids, 2023, 35(5): 053319. |
| [20] | Zhu L T, Chen X Z, Ouyang B, et al. Review of machine learning for hydrodynamics, transport, and reactions in multiphase flows and reactors[J]. Industrial & Engineering Chemistry Research, 2022, 61(28): 9901-9949. |
| [21] | Bazai H, Kargar E, Mehrabi M. Using an encoder-decoder convolutional neural network to predict the solid holdup patterns in a pseudo-2D fluidized bed[J]. Chemical Engineering Science, 2021, 246: 116886. |
| [22] | Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. |
| [23] | Kazari M, Roko K, Kawaguchi T, et al. A study on conditions for similarity of particle motion in numerical simulation of dense gas-solid two phase flow[C]//Proceedings of the 2nd International Conference on Multiphase Flow'95. Kyoto, 1995. |
| [24] | Sulsky D, Zhou S J, Schreyer H L. Application of a particle-in-cell method to solid mechanics[J]. Computer Physics Communications, 1995, 87(1/2): 236-252. |
| [25] | Snider D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows[J]. Journal of Computational Physics, 2001, 170(2): 523-549. |
| [26] | Snider D M. Three fundamental granular flow experiments and CPFD predictions[J]. Powder Technology, 2007, 176(1): 36-46. |
| [27] | Lu L Q, Gopalan B, Benyahia S. Assessment of different discrete particle methods ability to predict gas-particle flow in a small-scale fluidized bed[J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7865-7876. |
| [28] | Liang Y S, Zhang Y M, Li T W, et al. A critical validation study on CPFD model in simulating gas-solid bubbling fluidized beds[J]. Powder Technology, 2014, 263: 121-134. |
| [29] | Kraft S, Kirnbauer F, Hofbauer H. CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input[J]. Applied Energy, 2017, 190: 408-420. |
| [30] | Li C L, Eri Q T. Comparison between two Eulerian-Lagrangian methods: CFD-DEM and MPPIC on the biomass gasification in a fluidized bed[J]. Biomass Conversion and Biorefinery, 2023, 13(5): 3819-3836. |
| [31] | 陈飞国, 葛蔚. 耦合粗粒化离散颗粒法和多相物质点法的气固两相流模拟[J]. 过程工程学报, 2019, 19(4): 651-660. |
| Chen F G, Ge W. Coupling of coarse-grained discrete particle method and particle-in-cell method for simulation of gas-solid flow[J]. The Chinese Journal of Process Engineering, 2019, 19(4): 651-660. | |
| [32] | Lu L Q, Xu J, Ge W, et al. EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows[J]. Chemical Engineering Science, 2014, 120: 67-87. |
| [33] | Harris S E, Crighton D G. Solitons, solitary waves, and voidage disturbances in gas-fluidized beds[J]. Journal of Fluid Mechanics, 1994, 266: 243-276. |
| [34] | Taghipour F, Ellis N, Wong C. Experimental and computational study of gas-solid fluidized bed hydrodynamics[J]. Chemical Engineering Science, 2005, 60(24): 6857-6867. |
| [35] | Liu X X, Zhu C Q, Geng S J, et al. Two-fluid modeling of Geldart A particles in gas-solid micro-fluidized beds[J]. Particuology, 2015, 21: 118-127. |
| [36] | Zhu A Q, Chang Q, Xu J, et al. A dual-grid approach to speed up large-scale CFD-DEM simulations[J]. Chemical Engineering Journal, 2024, 492: 152218. |
| [37] | Zhang Y, Xu J, Chang Q, et al. Bi-layer coarse-grained DPM of gas-solid systems with mesoscale heterogeneity resolved[J]. Chemical Engineering Science, 2022, 263: 118058. |
| [38] | Zhao X, Jiang Y, Li F, et al. A scaled MP-PIC method for bubbling fluidized beds[J]. Powder Technology, 2022, 404: 117501. |
| [1] | Jiuchun SUN, Yunlong SANG, Haitao WANG, Hao JIA, Yan ZHU. Study on influence of jet flow on slurry transport characteristics in slurry chamber of shield tunneling machines [J]. CIESC Journal, 2025, 76(S1): 246-257. |
| [2] | Songyuan GUO, Xiaoqing ZHOU, Wubing MIAO, Bin WANG, Rui ZHUAN, Qingtai CAO, Chengcheng CHEN, Guang YANG, Jingyi WU. Numerical study on characteristics of pressurized discharge in liquid oxygen tank equipped with porous plate in the ascent period of rocket [J]. CIESC Journal, 2025, 76(S1): 62-74. |
| [3] | Sheng CHEN, Zizheng LI, Chao MIAO, Xuegang BAI, Fei LI, Jiaxuan LIU, Tiantian LI, Shuang YANG, Rongrong LYU, Jiangyun WANG. Three-dimensional CFD simulation of non-uniform diffusion characteristic of high-risk chlorine gas in large-scale dense scene [J]. CIESC Journal, 2025, 76(9): 4630-4643. |
| [4] | Xiaofeng CAO, Huahai ZHANG, Jiangyun WANG, Limin WANG. Structural design and flow characteristics of conical gas laminar flow element [J]. CIESC Journal, 2025, 76(9): 4440-4448. |
| [5] | Zhiyong JIA, Xiankun SHEN, Xiaocheng LAN, Tiefeng WANG. CFD-DEM simulation of effects of gas density on pressurized fluidization [J]. CIESC Journal, 2025, 76(9): 4383-4397. |
| [6] | Guoqing SU, Xuemei TIAN, Yan LI, Jianwen ZHANG, Zhijun ZHANG. Erosion analysis and improvement of curved-tee in pneumatic conveying system [J]. CIESC Journal, 2025, 76(8): 3894-3904. |
| [7] | Yongli MA, Shu AN, Jie YANG, Mingyan LIU. A review on direct numerical simulation of gas-liquid-solid fluidized bed [J]. CIESC Journal, 2025, 76(8): 3772-3788. |
| [8] | Ze WANG, Qiong HU, Yajing CHEN, Yan WANG, Jiaxu GENG, Feiran SHEN. Leakage characteristics, sealing mechanism, and optimization design of self-impacting liquid seals [J]. CIESC Journal, 2025, 76(8): 4194-4204. |
| [9] | Zhengzheng GUO, Yidan ZHAO, Fuqiang WANG, Lu PEI, Yanling JIN, Fang REN, Penggang REN. Construction and electromagnetic wave absorption properties of MoS2/RGO/NiFe2O4 composites with heterogeneous architecture [J]. CIESC Journal, 2025, 76(7): 3719-3732. |
| [10] | Yiyun ZHANG, Hengzhi CHEN, Yang LI, Chang'an MU, Quanhai WANG. Effects of turbulence on radial gas diffusion in binary particle fluidized bed [J]. CIESC Journal, 2025, 76(6): 2559-2568. |
| [11] | Dongliang XU, Binbin ZHAO, Yimei SUN, Tingting LIU, Xiaoran LIU, Minggong CHEN. Simulation and optimal design of RPB based on modified porous medium model [J]. CIESC Journal, 2025, 76(4): 1569-1582. |
| [12] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Current status and prospects of research on fluidization characteristics of high-density particles [J]. CIESC Journal, 2025, 76(2): 466-483. |
| [13] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
| [14] | Zhengliang HUANG, Mingrui FENG, Qi SONG, Congjing REN, Yao YANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Inhibitory effect of premixed feedstock on particle agglomeration in fluidized pyrolysis reaction of waste resin [J]. CIESC Journal, 2024, 75(9): 3094-3102. |
| [15] | Xiaoyu QIAN, Xuan RUAN, Shuiqing LI. Structural reconstruction and levitation of dielectric particle layers in electric fields [J]. CIESC Journal, 2024, 75(8): 2756-2762. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||