CIESC Journal

   

Adaptive evidential deep learning framework for predicting PFAS environmental transport properties

Xiaoyun LV1(), Biaolin JIANG1(), Guo YUAN1, Huaicheng BEI1, Jie WANG1, Penghao SUN1, Xianyu SONG1(), Chuxiang ZHOU2(), Shuangliang ZHAO3   

  1. 1.School of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing 404020, China
    2.Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, CCDC Drilling & Production Technology Research Institute, Guanghan 618300, Sichuan, China
    3.Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China
  • Received:2025-10-21 Revised:2025-12-18 Published:2025-12-19
  • Contact: Biaolin JIANG, Xianyu SONG, Chuxiang ZHOU

融合自适应证据的深度学习框架预测PFAS环境迁移性质

吕笑云1(), 姜骉麟1(), 袁果1, 贝怀诚1, 王洁1, 孙鹏豪1, 宋先雨1(), 周楚翔2(), 赵双良3   

  1. 1.重庆三峡学院环境与化学工程学院,重庆 404020
    2.川庆钻探工程有限公司钻采工程技术研究院油气田应用化学四川省重点实验室,四川 广汉618300
    3.广西大学化学化工学院,广西石化资源加工与过程强化技术重点实验室,广西 南宁 530004
  • 通讯作者: 姜骉麟,宋先雨,周楚翔
  • 作者简介:吕笑云(1999—),女,研究生,xyl7177@163.com
  • 基金资助:
    国家自然科学基金项目(22478045);国家自然科学基金项目(22178072);重庆市自然科学基金项目(CSTB2024NSCQ-QCXMX0099);重庆市自然科学基金项目(CSTB2025NSCQ-LZX0099);重庆市教育委员会科技项目(KJZD-K202301202)

Abstract:

The study of pollutant transport and transformation in multi-phase environmental systems is directly relevant to the effectiveness of ecological risk assessment and pollution control technologies. However, traditional approaches are limited by data scarcity and challenges in quantifying uncertainties, making the accurate prediction of complex pollutants difficult. In this study, an adaptive evidential deep learning model was developed to predict the environmental transport behavior of emerging pollutants, specifically per- and polyfluoroalkyl substances (PFAS). The proposed model strategically integrates an evidential deep learning framework with advanced molecular representation learning and adaptive mechanisms, employing an improved adaptive evidential loss function with a regularization coefficient of 0.2 for model training and optimization. Experimental results demonstrate that the model achieves high-precision predictions for five critical environmental partition coefficients, including logKAW (air-water partition coefficient), logKOA (octanol-air partition coefficient), logKOC (organic carbon-water partition coefficient), logKOW (octanol-water partition coefficient), and logSW (water solubility), with coefficient of determination (R2) values exceeding 0.95 across all endpoints. Benchmark comparisons demonstrate that the evidence-based deep learning framework consistently outperforms conventional Dropout and Ensemble approaches, exhibiting over a 50% performance advantage under high data sparsity (Ratio > 0.8). The model maintains robust performance on the independent test set and accurately identifies regions of high uncertainty, providing a reliable tool for predicting PFAS environmental migration properties and supporting pollution-control strategies.

Key words: prediction, pollution, diffusion, deep learning, per- and polyfluoroalkyl substances

摘要:

污染物在多介质体系中的迁移与转化研究直接关系到环境评估与污染控制技术的有效性。然而,传统方法受限于数据稀缺和不确定性量化,难以应对复杂污染物的预测挑战。本研究开发了一种自适应证据深度学习模型,用于预测新型污染物全氟和多氟烷基物质(PFAS, per- and polyfluoroalkyl substances)的环境迁移行为关键性质。该模型整合证据深度学习框架、分子表示学习与自适应机制,采用改进的自适应证据损失函数(正则化系数0.2)训练。实验结果表明,该模型能够高精度预测五个关键环境迁移性质(R2>0.95):空气-水分配系数(log KAW)、辛醇-空气分配系数(log KOA)、有机碳-水分配系数(log KOC)、辛醇-水分配系数(log KOW)以及水溶解度(log SW)。基准对比显示,证据深度学习方法全面优于传统Dropout和Ensemble方法,在高数据稀疏度(Ratio>0.8)下性能优势超50%。模型在独立测试集上保持稳定性能,能准确识别高不确定性区域,为PFAS环境迁移性质预测和污染防控提供了可靠工具。

关键词: 预测, 污染, 扩散, 深度学习, 全氟和多氟烷基物质

CLC Number: