CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3585-3595.DOI: 10.11949/0438-1157.20241224
• Energy and environmental engineering • Previous Articles Next Articles
Peng YANG1(
), Wanli YOU2, Zhongqian LING1(
), Xianyang ZENG1, Yunchao LI1, Jiayi LIN1, Lijian WANG3,4, Dingkun YUAN1
Received:2024-10-31
Revised:2025-03-13
Online:2025-08-13
Published:2025-07-25
Contact:
Zhongqian LING
杨鹏1(
), 尤万里2, 凌忠钱1(
), 曾宪阳1, 李允超1, 林佳一1, 王丽建3,4, 袁定琨1
通讯作者:
凌忠钱
作者简介:杨鹏(1998—),男,硕士研究生,s22020804072@cjlu.edu.cn
基金资助:CLC Number:
Peng YANG, Wanli YOU, Zhongqian LING, Xianyang ZENG, Yunchao LI, Jiayi LIN, Lijian WANG, Dingkun YUAN. Experimental study on performance of compact three-chamber RTO system for treating waste gas containing ethyl acetate[J]. CIESC Journal, 2025, 76(7): 3585-3595.
杨鹏, 尤万里, 凌忠钱, 曾宪阳, 李允超, 林佳一, 王丽建, 袁定琨. 紧凑式三室RTO系统处理乙酸乙酯废气性能的实验研究[J]. 化工学报, 2025, 76(7): 3585-3595.
Add to citation manager EndNote|Ris|BibTeX
| 氧化室温度/℃ | 乙酸乙酯浓度/(mg/m3) | 进气风量/(m3/h) | 阀门切换时间/s |
|---|---|---|---|
| 600 | 1000 | 200 | 120 |
| 650 | 1000 | 200 | 120 |
| 700 | 1000 | 200 | 120 |
| 750 | 1000 | 200 | 120 |
| 800 | 1000 | 200 | 120 |
| 850 | 1000 | 200 | 120 |
Table 1 Oxidation chamber temperature test operating conditions
| 氧化室温度/℃ | 乙酸乙酯浓度/(mg/m3) | 进气风量/(m3/h) | 阀门切换时间/s |
|---|---|---|---|
| 600 | 1000 | 200 | 120 |
| 650 | 1000 | 200 | 120 |
| 700 | 1000 | 200 | 120 |
| 750 | 1000 | 200 | 120 |
| 800 | 1000 | 200 | 120 |
| 850 | 1000 | 200 | 120 |
| 进气风量/(m3/h) | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 阀门切换时间/s |
|---|---|---|---|
| 100 | 1000 | 800 | 120 |
| 120 | 1000 | 800 | 120 |
| 140 | 1000 | 800 | 120 |
| 160 | 1000 | 800 | 120 |
| 180 | 1000 | 800 | 120 |
| 200 | 1000 | 800 | 120 |
Table 2 Inlet air flow test operating conditions
| 进气风量/(m3/h) | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 阀门切换时间/s |
|---|---|---|---|
| 100 | 1000 | 800 | 120 |
| 120 | 1000 | 800 | 120 |
| 140 | 1000 | 800 | 120 |
| 160 | 1000 | 800 | 120 |
| 180 | 1000 | 800 | 120 |
| 200 | 1000 | 800 | 120 |
| 吹扫风量/(m3/h) | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 进气风量/(m3/h) | 阀门切换时间/s |
|---|---|---|---|---|
| 0 | 1000 | 800 | 200 | 120 |
| 16.2 | 1000 | 800 | 200 | 120 |
| 32.4 | 1000 | 800 | 200 | 120 |
| 48.6 | 1000 | 800 | 200 | 120 |
| 64.8 | 1000 | 800 | 200 | 120 |
| 81.0 | 1000 | 800 | 200 | 120 |
Table 3 Purge flow rate test operating conditions
| 吹扫风量/(m3/h) | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 进气风量/(m3/h) | 阀门切换时间/s |
|---|---|---|---|---|
| 0 | 1000 | 800 | 200 | 120 |
| 16.2 | 1000 | 800 | 200 | 120 |
| 32.4 | 1000 | 800 | 200 | 120 |
| 48.6 | 1000 | 800 | 200 | 120 |
| 64.8 | 1000 | 800 | 200 | 120 |
| 81.0 | 1000 | 800 | 200 | 120 |
| 阀门切换时间/s | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 进气风量/(m3/h) |
|---|---|---|---|
| 60 | 500,1000,1500,2000,2500 | 850 | 200 |
| 120 | 500,1000,1500,2000,2500 | 850 | 200 |
| 180 | 500,1000,1500,2000,2500 | 850 | 200 |
| 240 | 500,1000,1500,2000,2500 | 850 | 200 |
Table 4 Valve switching time test operating conditions
| 阀门切换时间/s | 乙酸乙酯浓度/(mg/m3) | 氧化室温度/℃ | 进气风量/(m3/h) |
|---|---|---|---|
| 60 | 500,1000,1500,2000,2500 | 850 | 200 |
| 120 | 500,1000,1500,2000,2500 | 850 | 200 |
| 180 | 500,1000,1500,2000,2500 | 850 | 200 |
| 240 | 500,1000,1500,2000,2500 | 850 | 200 |
| [1] | Li S W, Lin Y Z, Liu G, et al. Research status of volatile organic compound (VOC) removal technology and prospect of new strategies: a review[J]. Environmental Science: Processes & Impacts, 2023, 25(4): 727-740. |
| [2] | Huss‐Marp J, Eberlein‐König B, Breuer K, et al. Influence of short‐term exposure to airborne Der p 1 and volatile organic compounds on skin barrier function and dermal blood flow in patients with atopic eczema and healthy individuals[J]. Clinical and Experimental Allergy, 2006, 36(3): 338-345. |
| [3] | Khan A, Kanwal H, Bibi S, et al. Volatile organic compounds and neurological disorders: from exposure to preventive interventions[M]//Environmental Contaminants and Neurological Disorders. Cham, Switzerland: Springer, 2021: 201-230. |
| [4] | Garg D, Mehndiratta M M, Wasay M, et al. Air pollution and headache disorders[J]. Annals of Indian Academy of Neurology, 2022, 25(): S35-S40. |
| [5] | Denisow-Pietrzyk M. Human skin reflects air pollution—a review of the mechanisms and clinical manifestations of environment-derived skin pathologies[J]. Polish Journal of Environmental Studies, 2021, 30(4): 3433-3444. |
| [6] | Ryerson T B, Trainer M, Holloway J S, et al. Observations of ozone formation in power plant plumes and implications for ozone control strategies[J]. Science, 2001, 292(5517): 719-723. |
| [7] | 赵琳, 张英锋, 李荣焕, 等. VOC的危害及回收与处理技术[J]. 化学教育, 2015, 36(16): 1-6. |
| Zhao L, Zhang Y F, Li R H, et al. Harms, recycling and treatment technology of VOC[J]. Chinese Journal of Chemical Education, 2015, 36(16): 1-6 | |
| [8] | Zhang X Y, Gao B, Creamer A E, et al. Adsorption of VOCs onto engineered carbon materials: a review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. |
| [9] | Belaissaoui B, Le Moullec Y, Favre E. Energy efficiency of a hybrid membrane/condensation process for VOC (volatile organic compounds) recovery from air: a generic approach[J]. Energy, 2016, 95: 291-302. |
| [10] | Gan G Q, Fan S Y, Li X Y, et al. Adsorption and membrane separation for removal and recovery of volatile organic compounds[J]. Journal of Environmental Sciences, 2023, 123: 96-115. |
| [11] | Yang Y, Wang G, Fang D, et al. Study of the use of a Pd-Pt-based catalyst for the catalytic combustion of storage tank VOCs[J]. International Journal of Hydrogen Energy, 2020, 45(43): 22732-22743. |
| [12] | 王波, 马睿, 薛国程, 等. 工业有机废气热氧化技术研究进展[J]. 化工进展,2017, 36(11): 4232-4242. |
| Wang B, Ma R, Xue G C, et al. Research progress on thermal oxidation technology for industrial organic waste gas[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4232-4242. | |
| [13] | Wang S B, Ang H M, Tade M O. Volatile organic compounds in indoor environment and photocatalytic oxidation: state of the art[J]. Environment International, 2007, 33(5): 694-705. |
| [14] | 杨显万, 孙珮石, 黄若华,等. 生物法净化低浓度挥发性有机废气研究[J]. 中国工程科学, 2001, 3(9): 64-68. |
| Yang X W, Sun P S, Huang R H, et al. Study on biological purification of low concentration volatile organic waste gas[J]. Engineering Science, 2001, 3(9): 64-68. | |
| [15] | McDonald B C, de Gouw J A, Gilman J B, et al. Vical source of urban organic emissions[J]. Science, 2018, 359(6377): 760-764. |
| [16] | 吴桂平. 蓄热式燃烧技术在有机废气处理项目的应用[J].能源与环境, 2021(4): 56-58. |
| Wu G P. Application of regenerative combustion technology in organic waste gas treatment project[J]. Energy and Environment, 2021(4): 56-58. | |
| [17] | Wang H L, Nie L, Li J, et al. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries[J]. Chinese Science Bulletin, 2013, 58(7): 724-730. |
| [18] | Cannon B J. Dual-chamber RTO oxidizers provide cost-effective VOC compliance for metal finishers and coaters[J]. Metal Finishing, 2003, 101(1): 53-56. |
| [19] | Chou M S, Hei C M, Huang Y W. Regenerative thermal oxidation of airborne N,N-dimethylformamide and its associated nitrogen oxides formation characteristics[J]. Journal of the Air & Waste Management Association, 2007, 57(8): 991-999. |
| [20] | Amelio M, Florio G, Morrone P, et al. The influence of rotary valve distribution systems on the energetic efficiency of regenerative thermal oxidizers (RTO)[J]. International Journal of Energy Research,2008, 32(1): 24-34. |
| [21] | Hao X W, Li R X, Wang J, et al. Numerical simulation of a regenerative thermal oxidizer for volatile organic compounds treatment[J]. Environmental Engineering Research,2018, 23(4): 397-405. |
| [22] | 帅启凡, 陆建刚, 李健生. 蓄热式热力燃烧室结构模拟优化与应用效果分析[J]. 环境工程, 2022, 40(2):146-153. |
| Shuai Q F, Lu J G, Li J S. Analysis on structural simulation, optimization and application effect of a regenerative thermal oxidizer [J]. Environmental Engineering, 2022, 40(2): 146-153. | |
| [23] | Choi B S, Yi J. Simulation and optimization on the regenerative thermal oxidation of volatile organic compounds[J]. Chemical Engineering Journal, 2000, 76(2): 103-114. |
| [24] | Wang F Z, Lei X X, Hao X W. Key factors in the volatile organic compounds treatment by regenerative thermal oxidizer[J]. Journal of the Air & Waste Management Association, 2020, 70(5): 557-567. |
| [25] | You Y H, Huang H, Shao G W, et al. A three-dimensional numerical model of unsteady flow and heat transfer in ceramic honeycomb regenerator[J]. Applied Thermal Engineering,2016, 108: 1243-1250. |
| [26] | 王琛, 杨佳莹, 王宝琳, 等. 山东省化学合成类制药VOCs排放特征及影响[J]. 环境科学, 2024, 45(12): 7012-7020. |
| Wang C, Yang J Y, Wang B L, et al. Characteristics and impact of VOCs emissions from chemical synthesis pharmaceuticals in Shandong province[J]. Environmental Science, 2024, 45 (12): 7012-7020. | |
| [27] | Ma J W, Li L. VOC emitted by biopharmaceutical industries: source profiles, health risks, and secondary pollution[J]. Journal of Environmental Sciences, 2024, 135: 570-584. |
| [28] | 郝立苗, 黄妃慧, 王勇伟, 等. 蜂窝陶瓷的研究现状及应用[J]. 佛山陶瓷, 2021, 31(6): 32-39. |
| Hao L M, Huang F H, Wang Y W, et al. Research status and application of honeycomb ceramics[J]. Foshan Ceramics, 2021, 31(6): 32-39. | |
| [29] | Iijima S, Nakayama K, Kuchar D, et al. Optimum conditions for effective decomposition of toluene as VOC gas by pilot-scale regenerative thermal oxidizer[J]. World Academy of Science, Engineering and Technology, 2008, 2: 1589-1594. |
| [30] | 王洋. 耦合多步反应的VOCs蓄热燃烧过程数值模拟[D]. 镇江: 江苏科技大学, 2023. |
| Wang Y. Numerical simulation of VOCs regenerative combustion process coupled with multi-step reaction[D]. Zhenjiang: Jiangsu University of Science and Technology, 2023. | |
| [31] | 王姣. 蓄热式热氧化炉在处理挥发性有机气体中的关键因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
| Wang J. Research on key factors of regenerative thermal oxidation furnace in treating volatile organic gases[D]. Harbin: Harbin Institute of Technology, 2018. |
| [1] | Yifan SHI, Gang KE, Hao CHEN, Xiaosheng HUANG, Fang YE, Chengjiao LI, Hang GUO. Simulation of temperature control in large-scale high and low temperature environmental laboratory [J]. CIESC Journal, 2025, 76(S1): 268-280. |
| [2] | Wei LI, Hao CHEN, Gang KE, Xiaosheng HUANG, Chengjiao LI, Hang GUO, Fang YE. Simulation of the fresh air system in the simulation platform of the high-altitude environmental adaptability laboratory [J]. CIESC Journal, 2025, 76(S1): 360-369. |
| [3] | Hao DUAN, Wenchao WANG, Dong LIU, Xiaojun YIN, Erjiang HU, Ke ZENG. Effects of methanol energy substitution ratio on performance of a methanol/diesel dual direct injection engine [J]. CIESC Journal, 2025, 76(7): 3552-3560. |
| [4] | Lei WU, Zixuan HU, Yuan GAO, Changbo LIU, Husheng CAO, Tiantian LIU, Ruiyu ZHU, Jun ZHOU. Oxidation remediation of polycyclic aromatic hydrocarbons contaminated soil by microwave combined with biochar activated persulfate [J]. CIESC Journal, 2025, 76(7): 3659-3670. |
| [5] | Shuyu WANG, Zhiliang XUE, Jing ZHU, Xin FU, Yonggang ZHOU, Yiming HU, Qunxing HUANG. Experimental study on mass and morphological character during scrap tire pyrolysis [J]. CIESC Journal, 2025, 76(7): 3459-3467. |
| [6] | Yifei WANG, Jingjie REN, Mingshu BI, Haotian YE. Multi-objective optimization of cyclohexane oxidation process parameters based on inherent safety and economic performance [J]. CIESC Journal, 2025, 76(6): 2722-2732. |
| [7] | Yujie MAO, Xiaofei LU, Xian SUO, Lifeng YANG, Xili CUI, Huabin XING. Advances in research on catalysts for deep removal of trace oxygen in industrial gases [J]. CIESC Journal, 2025, 76(5): 1997-2010. |
| [8] | Zhongchen MA, Zijie WEI, Mingtao ZHU, Hengdi YE, Xueyi GUO, Lei TAN. Preparation of battery-grade manganese tetroxide for lithium manganate cathode material by one-step oxidation method [J]. CIESC Journal, 2025, 76(3): 1363-1374. |
| [9] | Yue GAO, Ding LI, Yumiao GAO. Study on catalytic oxidation remediation technology of organic polluted site soil [J]. CIESC Journal, 2025, 76(3): 1297-1304. |
| [10] | Wenzhi DAI, Xiongjian SHEN, Xiaobo SONG, Xinle YANG. Environmental analysis of biomass double-stage evaporation double-regenerative organic Rankine cycle system [J]. CIESC Journal, 2025, 76(3): 1230-1242. |
| [11] | Zhongqing CHEN, Jiaxu LIU, Yanyu WANG, Hongquan JING, Cuihong HOU, Lingbo QU. Effect of K-B-Al ternary system on the melting characteristics and glass structure of tailings [J]. CIESC Journal, 2025, 76(3): 1323-1333. |
| [12] | Fei CHANG, Renbo SHI, Shihua LIU, Wenqian GAO, Yifei WANG, Bin ZHENG, Yixuan JIAO, Xingying LAN, Chunming XU, Yehua HAN. Product life cycle carbon footprint evaluation for petrochemical industry [J]. CIESC Journal, 2025, 76(2): 419-437. |
| [13] | Zhihua XIAO, Haonan FANG, Fangzhi ZHENG, Dong SUN, Lida TAO, Yongfeng LI, Chunming XU, Xinlong MA. NaCl assisted constructing high-performance pitch-based hard carbon anode material [J]. CIESC Journal, 2025, 76(2): 846-857. |
| [14] | Yi ZHONG, Shiyu ZHOU, Lianchao JIU, Yuxiao LI, Haojiang WU, Zhiyong ZHOU. Research progress on direct remediation and regeneration of cathode materials from spent lithium iron phosphate batteries [J]. CIESC Journal, 2024, 75(S1): 1-13. |
| [15] | Lingya YUAN, Ying ZHANG. The growth of PV sector in China and its implications for the resource and environmental sustainability [J]. CIESC Journal, 2024, 75(S1): 14-24. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||