CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5625-5637.DOI: 10.11949/0438-1157.20221116
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Pengpeng WANG(), Yanggang JIA, Xia SHAO, Jie CHENG, Aiqin MAO(), Jie TAN, Daolai FANG
Received:
2022-08-08
Revised:
2022-11-01
Online:
2023-01-17
Published:
2022-12-05
Contact:
Aiqin MAO
王朋朋(), 贾洋刚, 邵霞, 程婕, 冒爱琴(), 檀杰, 方道来
通讯作者:
冒爱琴
作者简介:
王朋朋(1995—),男,硕士研究生,wang_pengpeng2022@163.com
基金资助:
CLC Number:
Pengpeng WANG, Yanggang JIA, Xia SHAO, Jie CHENG, Aiqin MAO, Jie TAN, Daolai FANG. Preparation and lithium storage performance of K+-doped spinel (Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4 high-entropy oxide anode materials[J]. CIESC Journal, 2022, 73(12): 5625-5637.
王朋朋, 贾洋刚, 邵霞, 程婕, 冒爱琴, 檀杰, 方道来. K+掺杂尖晶石型(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)3O4高熵氧化物负极材料制备与储锂性能研究[J]. 化工学报, 2022, 73(12): 5625-5637.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 High-resolution TEM image (a), selected area electron diffraction (SAED) pattern (b), SEM images at different magnifications [(c),(d)] and EDS mapping images (e) of K1 sample
样品 | 比表面积/ (m2·g-1) | 孔体积/ (cm3·g-1) | 平均孔径/nm | 最可几孔径/nm |
---|---|---|---|---|
K0 | 26.31 | 0.14 | 21.45 | 2.77 |
K0.5 | 38.69 | 0.18 | 18.83 | 2.78 |
K1 | 22.28 | 0.08 | 14.17 | 3.06 |
K1.5 | 42.35 | 0.14 | 13.39 | 2.58 |
Table 1 BET surface area, pore volume, average pore size and the most probable pore size of the samples
样品 | 比表面积/ (m2·g-1) | 孔体积/ (cm3·g-1) | 平均孔径/nm | 最可几孔径/nm |
---|---|---|---|---|
K0 | 26.31 | 0.14 | 21.45 | 2.77 |
K0.5 | 38.69 | 0.18 | 18.83 | 2.78 |
K1 | 22.28 | 0.08 | 14.17 | 3.06 |
K1.5 | 42.35 | 0.14 | 13.39 | 2.58 |
Fig.5 XPS survey spectra (a), high-resolution XPS spectrum of all elements [(b)—(h)] and Raman spectra (i) and four-probes conductivity (j) of the samples
Fig.6 Cycling performance at different current density [(a), (c)] and stepped rate capability (b) of the electrodes; CV curves (d) and charge-discharge profiles (e) of K1 electrode
Fig.7 SEM images before cycling (a) and after 150 cycles (b), HRTEM image after 150 cycles (c) and XRD patterns before cycling and after 150 cycles (d) of K1 electrode
Samples | Rs/Ω | Rct/Ω | ||||
---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |
K0 | 6.7 | 4.2 | 284 | 156 | 32.1 | 29.0 |
K0.5 | 4.1 | 5.4 | 246 | 125 | 13.2 | 86.3 |
K1 | 5.3 | 4.8 | 228 | 102 | 38.5 | 257.3 |
K1.5 | 7.4 | 5.5 | 265 | 134 | 17.0 | 45.4 |
Table 2 Parameters of equivalent circuit diagrams of the electrodes before and after 150 cycles
Samples | Rs/Ω | Rct/Ω | ||||
---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |
K0 | 6.7 | 4.2 | 284 | 156 | 32.1 | 29.0 |
K0.5 | 4.1 | 5.4 | 246 | 125 | 13.2 | 86.3 |
K1 | 5.3 | 4.8 | 228 | 102 | 38.5 | 257.3 |
K1.5 | 7.4 | 5.5 | 265 | 134 | 17.0 | 45.4 |
Fig.9 CV curves at different scan rates (a), lgip-lgv relation (b) and pseudocapacitive (shaded region) contribution at 0.1 mV·s-1 scan rate (c) of K1 electrode; pseudocapacitive contribution at different scan rates of the electrodes (d)
1 | 刘祥哲. 锂离子电池层状复合正极材料的制备与改性[D]. 济南: 济南大学, 2011. |
Liu X Z. Synthesis and modification of layered compound cathode material for lithium-ion batteries[D]. Jinan: University of Jinan, 2011. | |
2 | 何欢. 钴、铁基金属氧化物结构调控及其储锂性能研究[D]. 武汉: 华中科技大学, 2016. |
He H. Structure controlling of cobalt/iron-based oxides and lithium storage performance research[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
3 | Chen H, Qiu N, Wu B Z, et al. A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries[J]. RSC Advances, 2020, 10(16): 9736-9744. |
4 | Duan C Q, Tian K H, Li X L, et al. New spinel high-entropy oxides (FeCoNiCrMnXLi)3O4 (X = Cu, Mg, Zn) as the anode material for lithium-ion batteries[J]. Ceramics International, 2021, 47(22): 32025-32032. |
5 | 麦永津. 过渡金属氧化物锂离子电池负极材料纳米复合化改性研究[D]. 杭州: 浙江大学, 2012. |
Mai Y J. Improved electrochemical performance of transition metal oxide nanocomposites as anode materials for lithium ion batteries[D]. Hangzhou: Zhejiang University, 2012. | |
6 | 姚煜. 纳米结构氧化物锂离子电池负极材料研究[D]. 上海: 复旦大学, 2012. |
Yao Y. Nanostructured oxide lithium-ion battery anode materials research[D]. Shanghai: Fudan University, 2012. | |
7 | Song J, Lu X M, Tian Q H, et al. Dual-stable engineering enables high-performance Zn2SnO4-based lithium-ion battery anode[J]. Journal of Alloys and Compounds, 2022, 910: 164924. |
8 | Yuan D, Adekoya D, Dou Y H, et al. Cation-vacancy induced Li+ intercalation pseudocapacitance at atomically thin heterointerface for high capacity and high power lithium-ion batteries[J]. Journal of Energy Chemistry, 2021, 62: 281-288. |
9 | Cao Z Z, Liu C H, Huang Y X, et al. Oxygen-vacancy-rich NiCo2O4 nanoneedles electrode with poor crystallinity for high energy density all-solid-state symmetric supercapacitors[J]. Journal of Power Sources, 2020, 449: 227571. |
10 | Wang X L, Liu J, Hu Y F, et al. Oxygen vacancy-expedited ion diffusivity in transition-metal oxides for high-performance lithium-ion batteries[J]. Science China Materials, 2022, 65(6): 1421-1430. |
11 | Anh L T, Rai A K, Thi T V, et al. Enhanced electrochemical performance of novel K-doped Co3O4 as the anode material for secondary lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(19): 6966-6975. |
12 | Wang J, Zhao H L, Yang Q, et al. Electrochemical characteristics of Li4- x Cu x Ti5O12 used as anode material for lithium-ion batteries[J]. Ionics, 2013, 19(3): 415-419. |
13 | Zheng Y, Wu X, Lan X X, et al. A spinel (FeNiCrMnMgAl)3O4 high entropy oxide as a cycling stable anode material for Li-ion batteries[J]. Processes, 2021, 10(1): 49. |
14 | Bérardan D, Franger S, Meena A K, et al. Room temperature lithium superionic conductivity in high entropy oxides[J]. Journal of Materials Chemistry A, 2016, 4(24): 9536-9541. |
15 | Yan J H, Wang D, Zhang X Y, et al. A high-entropy perovskite titanate lithium-ion battery anode[J]. Journal of Materials Science, 2020, 55(16): 6942-6951. |
16 | 李星, 瞿美臻, 于作龙. 锂离子电池负极材料Li4- x K x Ti5O12结构和电化学性能[J]. 无机化学学报, 2010, 26(2): 233-239. |
Li X, Qu M Z, Yu Z L. Structural and electrochemical characteristics of Li4- x K x Ti5O12 as anode material for lithium-ion batteries[J]. Chinese Journal of Inorganic Chemistry, 2010, 26(2): 233-239. | |
17 | Qiu N, Chen H, Yang Z M, et al. A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O with superior lithium storage performance[J]. Journal of Alloys and Compounds, 2019, 777: 767-774. |
18 | Nguyen T X, Tsai C C, Patra J, et al. Co-free high entropy spinel oxide anode with controlled morphology and crystallinity for outstanding charge/discharge performance in lithium-ion batteries[J]. Chemical Engineering Journal, 2022, 430: 132658. |
19 | Rost C M, Sachet E, Borman T, et al. Entropy-stabilized oxides[J]. Nature Communications, 2015, 6: 8485. |
20 | Sarkar A, Wang Q S, Schiele A, et al. High-entropy oxides: fundamental aspects and electrochemical properties[J]. Advanced Materials, 2019, 31(26): 1806236. |
21 | Nguyen T X, Patra J, Chang J K, et al. High entropy spinel oxide nanoparticles for superior lithiation-delithiation performance[J]. Journal of Materials Chemistry A, 2020, 8(36): 18963-18973. |
22 | Xiao B, Wu G, Wang T D, et al. High-entropy oxides as advanced anode materials for long-life lithium-ion batteries[J]. Nano Energy, 2022, 95: 106962. |
23 | Wang D, Jiang S D, Duan C Q, et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance[J]. Journal of Alloys and Compounds, 2020, 844: 156158. |
24 | Xiang H Z, Xie H X, Chen Y X, et al. Porous spinel-type (Al0.2CoCrFeMnNi)0.58O4- δ high-entropy oxide as a novel high-performance anode material for lithium-ion batteries[J]. Journal of Materials Science, 2021, 56(13): 8127-8142. |
25 | Mao A Q, Xiang H Z, Zhang Z G, et al. Solution combustion synthesis and magnetic property of rock-salt (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O high-entropy oxide nanocrystalline powder[J]. Journal of Magnetism and Magnetic Materials, 2019, 484: 245-252. |
26 | 项厚政, 谢鸿翔, 李文超, 等. 尖晶石型高熵氧化物的制备和电化学性能[J]. 高等学校化学学报, 2020, 41(8): 1801-1809. |
Xiang H Z, Xie H X, Li W C, et al. Synthesis and electrochemical performance of spinel-type high-entropy oxides[J]. Chemical Journal of Chinese Universities, 2020, 41(8): 1801-1809. | |
27 | Bérardan D, Franger S, Dragoe D, et al. Colossal dielectric constant in high entropy oxides[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2016, 10(4): 328-333. |
28 | Chen H, Qiu N, Wu B Z, et al. Tunable pseudocapacitive contribution by dimension control in nanocrystalline-constructed (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O solid solutions to achieve superior lithium-storage properties[J]. RSC Advances, 2019, 9(50): 28908-28915. |
29 | 肖雪春, 有俊达, 赵阳, 等. 基于溶液燃烧法制备多孔结构材料的实验设计[J]. 实验科学与技术, 2021, 19(1): 70-74. |
Xiao X C, You J D, Zhao Y, et al. Porous structural materials synthesized by one-step solution combustion method[J]. Experiment Science and Technology, 2021, 19(1): 70-74. | |
30 | 吉可明, 孟凡会, 李忠. 溶液燃烧法制备无机材料研究进展[J]. 现代化工, 2014, 34(5): 22-25, 27. |
Ji K M, Meng F H, Li Z. Recent advance in inorganic material prepared by solution combustion synthesis[J]. Modern Chemical Industry, 2014, 34(5): 22-25, 27. | |
31 | An Q Y, Zhang P F, Xiong F Y, et al. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries[J]. Nano Research, 2015, 8(2): 481-490. |
32 | Fang D L, Zhao Y C, Wang S S, et al. Highly efficient synthesis of nano-Si anode material for Li-ion batteries by a ball-milling assisted low-temperature aluminothermic reduction[J]. Electrochimica Acta, 2020, 330: 135346. |
33 | Zou F, Hu X, Li Z, et al. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries[J]. Advanced Materials, 2014, 26(38): 6622-6628. |
34 | Zhang Y Y, Chen P, Wang Q Y, et al. High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure[J]. Advanced Energy Materials, 2021, 11(31): 2101712. |
35 | Gu Y J, Li Y, Chen Y B, et al. Enhanced oxygen vacancies in nanostructured LiNi0.5Mn1.5O4- δ with a P4332 space group[J]. International Journal of Electrochemical Science, 2017, 12: 9523-9532. |
36 | Tang Z K, Xue Y F, Teobaldi G, et al. The oxygen vacancy in Li-ion battery cathode materials[J]. Nanoscale Horizons, 2020, 5(11): 1453-1466. |
37 | Cui Y, Xiao K F, Bedford N M, et al. Refilling nitrogen to oxygen vacancies in ultrafine tungsten oxide clusters for superior lithium storage[J]. Advanced Energy Materials, 2019, 9(37): 1902148. |
38 | Sarkar A, Velasco L, Wang D, et al. High entropy oxides for reversible energy storage[J]. Nature Communications, 2018, 9(1): 1-9. |
39 | Li Z Y, Zhang C K, Liu C F, et al. Enhanced electrochemical properties of Sn-doped V2O5 as a cathode material for lithium ion batteries[J]. Electrochimica Acta, 2016, 222: 1831-1838. |
40 | Sarkar A, Djenadic R, Usharani N J, et al. Nanocrystalline multicomponent entropy stabilised transition metal oxides[J]. Journal of the European Ceramic Society, 2017, 37(2): 747-754. |
41 | Wang J, Polleux J, Lim J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931. |
42 | 李延伟, 李世玉, 谢志平, 等. 电化学沉积制备V2O5薄膜电极的表面结构及储钠性能[J]. 化工学报, 2016, 67(11): 4771-4778. |
Li Y W, Li S Y, Xie Z P, et al. Surface morphology and sodium storage performance of V2O5 thin film electrode prepared by CTAB assisted electrodeposition[J]. CIESC Journal, 2016, 67(11): 4771-4778. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[7] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[8] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[9] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[10] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[11] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[12] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[13] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[14] | Qin YANG, Chuanjian QIN, Mingzi LI, Wenjing YANG, Weijie ZHAO, Hu LIU. Fabrication and properties of dual shape memory MXene based hydrogels for flexible sensor [J]. CIESC Journal, 2023, 74(6): 2699-2707. |
[15] | Yuanchao LIU, Xuhao JIANG, Ke SHAO, Yifan XU, Jianbin ZHONG, Zhuan LI. Influence of geometrical dimensions and defects on the thermal transport properties of graphyne nanoribbons [J]. CIESC Journal, 2023, 74(6): 2708-2716. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||