1 |
卢凯瑞. 《BP世界能源展望》2019年中文版发布[J]. 中国石油石化, 2019, 415(8): 15.
|
|
Lu K R. BP energy outlook 2019 edition [J]. China Petrochem, 2019, 415(8): 15.
|
2 |
Kumar B, Llorente M, Froehlich J, et al. Photochemical and photoelectrochemical reduction of CO2[J]. Annual Review of Physical Chemistry, 2012, 63(1): 541-569.
|
3 |
Xie S, Zhang Q, Liu G, et al. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures[J]. Chemical Communications (Cambridge, England), 2016, 52(1): 35-59.
|
4 |
White J L, Baruch M F, Pander Iii J E, et al. Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes[J]. Chemical Reviews, 2015, 115(23): 12888-12935.
|
5 |
Walter M G, Warren E L, McKone J R, et al. Solar water splitting cells[J]. Chemical Reviews, 2010, 110(11): 6446-6473.
|
6 |
Yoshida H. Heterogeneous photocatalytic conversion of carbon dioxide[M]//Zang L. Energy Efficiency and Renewable Energy Through Nanotechnology. Green Energy and Technology. London: Springer, 2011.
|
7 |
Miranda S M, Romanos G E, Likodimos V, et al. Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO2/CNT composites[J]. Applied Catalysis B: Environmental, 2014, 147: 65-81.
|
8 |
Qian F, Wang G, Li Y. Solar-driven microbial photoelectrochemical cells with a nanowire photocathode[J]. Nano Letters, 2010, 10(11): 4686-4691.
|
9 |
Woolerton T W, Sheard S, Reisner E, et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light[J]. Journal of the American Chemical Society, 2010, 132(7): 2132-2133.
|
10 |
Parkin A, Seravalli J, Vincent K A, et al. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode[J]. Journal of the American Chemical Society, 2007, 129(34): 10328-10329.
|
11 |
Shin W, Lee S H, Shin J W, et al. Highly selective electrocatalytic conversion of CO2 to CO at -0.57 V (NHE) by carbon monoxide dehydrogenase from Moorella thermoacetica[J]. Journal of the American Chemical Society, 2003, 125(48): 14688-14689.
|
12 |
Reda T, Plugge C M, Abram N J, et al. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme[J]. PNAS, 2008, 105(31): 10654-10658.
|
13 |
Liu C, Gallagher J J, Sakimoto K K, et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Letters, 2015, 15(5): 3634-3639.
|
14 |
Liu C, Colón B C, Ziesack M, et al. Water splitting-biosynthetic system with CO₂ reduction efficiencies exceeding photosynthesis[J]. Science, 2016, 352(6290): 1210-1213.
|
15 |
Nichols E M, Gallagher J J, Liu C, et al. Hybrid bioinorganic approach to solar-to-chemical conversion[J]. PNAS, 2015, 112(37): 11461-11466.
|
16 |
Fu Q, Xiao S, Li Z, et al. Hybrid solar-to-methane conversion system with a Faradaic efficiency of up to 96%[J]. Nano Energy, 2018, 53: 232-239.
|
17 |
Pu Y C, Wang G M, Chang K D, et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting[J]. Nano Letters, 2013, 13(8): 3817-3823.
|
18 |
Yang Y, Ling Y C, Wang G M, et al. Photohole induced corrosion of titanium dioxide: mechanism and solutions[J]. Nano Letters, 2015, 15(10): 7051-7057.
|
19 |
Wang M Y, Ioccozia J, Sun L, et al. Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis[J]. Energy Environ. Sci., 2014, 7(7): 2182-2202.
|
20 |
Leong S, Razmjou A, Wang K, et al. TiO2 based photocatalytic membranes: a review[J]. Journal of Membrane Science, 2014, 472: 167-184.
|
21 |
Bagheri S, Muhd Julkapli N, Bee Abd Hamid S. Titanium dioxide as a catalyst support in heterogeneous catalysis[J]. The Scientific World Journal, 2014, 2014: 727496.
|
22 |
Zhao F, Wang B F, Tang Y F, et al. Niobium doped anatase TiO2 as an effective anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(45): 22969-22974.
|
23 |
Choi S K, Kang U, Lee S, et al. Sn-coupled p-Si nanowire arrays for solar formate production from CO2[J]. Advanced Energy Materials, 2014, 4(11): 1301614.
|
24 |
Qu Y Q, Duan X F. Progress, challenge and perspective of heterogeneous photocatalysts[J]. Chemical Society Reviews, 2013, 42(7): 2568-2580.
|
25 |
Peyton B M. Effects of shear stress and substrate loading rate on Pseudomonas aeruginosa biofilm thickness and density[J]. Water Research, 1996, 30(1): 29-36.
|
26 |
You S J, Zhao Q L, Zhang J N, et al. A graphite-granule membrane-less tubular air-cathode microbial fuel cell for power generation under continuously operational conditions[J]. Journal of Power Sources, 2007, 173(1): 172-177.
|
27 |
Rabaey K, Lissens G, Siciliano S D, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency[J]. Biotechnology Letters, 2003, 25(18): 1531-1535.
|
28 |
Jeremiasse A W, Hamelers H V M, Buisman C J N. Microbial electrolysis cell with a microbial biocathode[J]. Bioelectrochemistry, 2010, 78(1): 39-43.
|
29 |
Rozendal R A, Jeremiasse A W, Hamelers H V, et al. Hydrogen production with a microbial biocathode[J]. Environmental Science & Technology, 2008, 42(2): 629-634.
|
30 |
Croese E, Pereira M A, Euverink G J W, et al. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell[J]. Applied Microbiology and Biotechnology, 2011, 92(5): 1083-1093.
|
31 |
Fu Q, Kuramochi Y, Fukushima N, et al. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis[J]. Environmental Science & Technology, 2015, 49(2): 1225-1232.
|