[1] |
Yang Baohai (杨宝海), Wang Hong (王宏), Zhu Xun (朱恂), et al. Effect of velocity on behavior of droplet impacting superhydrophobic surface [J]. CIESC Journal (化工学报), 2012, 63 (10): 3027-3033
|
[2] |
Moreira A L N, Moita A S, Panao M R. Advances and challenges in explaining fuel spray impingement: how much of single droplet impact research is useful? [J]. Progress in Energy and Combustion Science, 2010, 36 (5): 554-580
|
[3] |
Li Dashu (李大树), Qiu Xingqi (仇性启), Cui Yunjing (崔运静), et al. Numerical analysis on impacting velocity effect on spray oil droplet impacting onto a surface during diesel engine cold starting [J]. Transactions of the Chinese Society for Agricultural Machinery (农业机械学报), 2014, 45 (6): 25-31
|
[4] |
Liang Chao (梁超), Wang Hong (王宏), Zhu Xun (朱恂), et al. Numerical simulation of droplet impact on surfaces with different wettabilities [J]. CIESC Journal (化工学报), 2013, 64 (8): 2745-2751
|
[5] |
Li Dashu (李大树), Qiu Xingqi (仇性启), Yu Lei (于磊), et al. Review of spray droplet impact on a surface [J]. Industrial Heating (工业加热), 2014, 43 (2): 1-4
|
[6] |
Ge Y, Fan L S. Droplet-particle collision mechanics with film-boiling evaporation [J]. Journal of Fluid Mechanics, 2007, 573: 311-337
|
[7] |
Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces [J]. Atomization and Sprays, 2001, 11 (2): 155-65
|
[8] |
Mao T, Kuhn D, Tran H. Spread and rebound of liquid droplets upon impact on flat surfaces [J]. AIChE Journal, 1997, 43 (9): 2169-2179
|
[9] |
Tabbara H, Gu S. Modelling of impingement phenomena for molten metallic droplets with low to high velocities [J]. International Journal of Heat and Mass Transfer, 2012, 55 (7): 2081-2086
|
[10] |
Gao Shan (高珊), Qu Wei (曲伟), Yao Wei (姚伟). Flow and heat transfer of droplet impinging on hot flat surface during spray cooling [J]. Journal of Engineering Thermophysics (工程热物理学报), 2007, 28 (1): 221-224
|
[11] |
Sussman M, Puckett E G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows [J]. Journal of Computational Physics, 2000, 162 (2): 301-337
|
[12] |
Yokoi K. A numerical method for free-surface flows and its application to droplet impact on a thin liquid layer[J]. Journal of Scientific Computing, 2008, 35(2/3): 372-396
|
[13] |
Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics, 1981, 39 (1): 201-225
|
[14] |
Tanguy S, Berlemont A. Application of a level set method for simulation of droplet collisions [J]. International Journal of Multiphase Flow, 2005, 31 (9): 1015-1035
|
[15] |
Olsson E, Kreiss G. A conservative level set method for two-phase flow [J]. Journal of Computational Physics, 2005, 210 (1): 225-246
|
[16] |
Brackbill J U, Kothe D B. A continuum method for modeling surface tension [J]. Journal of Computational Physics, 1992, 100 (2): 335-354
|
[17] |
Ubbink O, Issa R I. A method for capturing sharp fluid interfaces on arbitrary meshes [J]. Journal of Computational Physics, 1999, 153 (1): 26-50
|
[18] |
Pasandideh-Fard M, Qiao Y M, Chandra S, Mostaghimi J. Capillary effects during droplet impact on a solid surface [J]. Phys. Fluids, 1996, 8: 650-659
|
[19] |
Ukiwe C, Kwok D Y. On the maximum spreading diamater of impacting droplets on well-prepared solid surfaces [J]. Langmuir, 2005, 21: 666-673
|
[20] |
Chandra S, Avedisian C T. On the collision of a droplet with a solid surface [J]. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1991, 432 (1884): 13-41
|