CIESC Journal ›› 2015, Vol. 66 ›› Issue (4): 1378-1387.DOI: 10.11949/j.issn.0438-1157.20141210

Previous Articles     Next Articles

On-line soft sensor based on stable Hammerstein model and its applications

CONG Qiumei1,2,3, YUAN Mingzhe2,3, WANG Hong2,3,4   

  1. 1. School of Information and Control Engineering, Liaoning Shihua University, Fushun 113001, Liaoning, China;
    2. Deptartment of Information Service & Intelligent Control, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China;
    3. Key Laboratory of Networked Control System, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China;
    4. Microcyber Incorporated, Shenyang 110179, Liaoning, China
  • Received:2014-08-11 Revised:2014-12-22 Online:2015-04-05 Published:2015-04-05
  • Supported by:

    supported by the National Natural Science Foundation of China (61034008), the China Postdoctoral Science Foundation (2013M530953) and the Independent Subject Sponsored by Key Laboratory of Control Network System, Chinese Academy of Sciences (WLHKZ2014005).

基于稳定Hammerstein模型的在线软测量建模方法及应用

丛秋梅1,2,3, 苑明哲2,3, 王宏2,3,4   

  1. 1. 辽宁石油化工大学信息与控制工程学院, 辽宁 抚顺 113001;
    2. 中国科学院沈阳自动化研究所信息服务与智能控制技术 研究室, 辽宁 沈阳 110016;
    3. 中国科学院院重点实验室网络化控制系统重点实验室, 辽宁 沈阳 110016;
    4. 沈阳中科博微自动化有限公司, 辽宁 沈阳 110179
  • 通讯作者: 丛秋梅
  • 作者简介:丛秋梅(1978-),女,博士,讲师。
  • 基金资助:

    国家自然科学基金项目(61034008);中国博士后科学基金项目(2013M530953);中国科学院网络化控制系统重点实验室自主课题(WLHKZ2014005)。

Abstract:

Aiming at the problem that the soft sensing precision of key variables deteriorates when unmodeled dynamics and uncertain disturbances exist in the complex industrial process, an on-line soft sensor based on stable Hammerstein model (H model) was presented. H model was composed of wavelet neural network with time-varying stable learning algorithm as nonlinear gain and ARX model with RLS (recursive least square) algorithm as linear part. The boundedness of identification error for H model was proved according to the Input-to-State Stability theory. Wavelet neural network could represent strong nonlinearity of the process, and the stable learning algorithm could restrain the influences of unmodeled dynamics and uncertain disturbances and improve prediction precision and self-adaptability. Simulations based on a nonlinear system and the wastewater treatment process showed that the soft sensing method presented in this paper possessed high prediction precision.

Key words: Hammerstein model, on-line modeling, soft sensor, prediction, stable learning, wastewater treatment process, stability

摘要:

针对复杂工业过程中由于存在未建模动态和不确定干扰,导致关键变量的软测量精度下降的问题,提出了一种基于稳定Hammerstein模型(H模型)的在线软测量建模方法。H模型的非线性增益采用带有时变稳定学习算法的小波神经网络模型,线性系统部分采用基于递推最小二乘的ARX模型,基于输入到状态稳定性理论证明了H模型辨识误差的有界性。其中小波神经网络具有表征强非线性的特性,稳定学习算法可抑制未建模动态和不确定干扰的影响,改善了模型的预测精度和自适应能力。以典型非线性系统和实际污水处理过程为例进行了仿真研究,结果表明,基于稳定H模型的软测量方法具有较高的在线软测量精度。

关键词: Hammerstein模型, 在线建模, 软测量, 预测, 稳定学习, 污水处理过程, 稳定性

CLC Number: