[1] |
WANG W, SU C, WU Y, et al. Progress in solid oxide fuel cells with nickel-based anodes operating on methane and related fuels[J]. Chemical Reviews, 2013, 113 (10): 8104-8151.
|
[2] |
ROKNI M. Thermodynamic analysis of SOFC (solid oxide fuel cell)-Stirling hybrid plants using alternative fuels[J]. Energy, 2013, 61: 87-97.
|
[3] |
HEINZEL A, VOGEL B, HÜBNER P. Reforming of natural gas— hydrogen generation for small scale stationary fuel cell systems[J]. Journal of Power Sources, 2002, 105 (2): 202-207.
|
[4] |
TANIM T, BAYLESS D J, TREMBLY J P. Modeling a 5 kWe planar solid oxide fuel cell based system operating on JP-8 fuel and a comparison with tubular cell based system for auxiliary and mobile power applications[J]. Journal of Power Sources, 2014, 245: 986-997.
|
[5] |
TANIM T, BAYLESS D J, TREMBLY J P. Modeling of a 5 kWe tubular solid oxide fuel cell based system operating on desulfurized JP-8 fuel for auxiliary and mobile power applications[J]. Journal of Power Sources, 2013, 221: 387-396.
|
[6] |
ROKNI M. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine[J]. Energy, 2014, 77: 6-18.
|
[7] |
DOHERTY W, REYNOLDS A, KENNEDY D. Process simulation of biomass gasification integrated with a solid oxide fuel cell stack[J]. Journal of Power Sources, 2015, 277: 292-303.
|
[8] |
DOHERTY W, REYNOLDS A, KENNEDY D. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus[J]. Energy, 2010, 35 (12): 4545-4555.
|
[9] |
DHINGRA H, PEPPLEY B A. Sensitivity analysis of a 1 kW diesel-fuelled SOFC generator: a single and paired-variable study[J]. Journal of Power Sources, 2013, 239: 527-537.
|
[10] |
SPECCHIA S, CUTILLO A, SARACCO G, et al. Concept study on ATR and SR fuel processors for liquid hydrocarbons[J]. Industrial & Engineering Chemistry Research, 2006, 45 (15): 5298-5307.
|
[11] |
SOPEÑA D, MELGAR A, BRICEÑO Y, et al. Diesel fuel processor for hydrogen production for 5 kW fuel cell application[J]. International Journal of Hydrogen Energy, 2007, 32 (10/11): 1429-1436.
|
[12] |
NI M, LEUNG M, LEUNG D. Parametric study of solid oxide steam electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32 (13): 2305-2313.
|
[13] |
NI M, LEUNG M K H, LEUNG D Y C. Parametric study of solid oxide fuel cell performance[J]. Energy Conversion and Management, 2007, 48 (5): 1525-1535.
|
[14] |
TIPPAWAN P, ARPORNWICHANOP A. Energy and exergy analysis of an ethanol reforming process for solid oxide fuel cell applications[J]. Bioresour. Technol., 2014, 157: 231-239.
|
[15] |
ANDERSSON M, YUAN J, SUNDEN B. Grading the amount of electrochemical active sites along the main flow direction of an SOFC[J]. Journal of The Electrochemical Society, 2012, 160 (1): F1-F12.
|
[16] |
PARMAR R D, KUNDU A, THURGOOD C, et al. Kinetic studies of the autothermal reforming of tetradecane over Pt/Al2O3 catalyst in a fixed-bed reactor[J]. Fuel, 2010, 89 (6): 1212-1220.
|
[17] |
ROKNI M. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine[J]. Energy, 2014, 76: 19-31.
|
[18] |
HAJIMOLANA S A, HUSSAIN M A, DAUD W M A W, et al. Mathematical modeling of solid oxide fuel cells: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15 (4): 1893-1917.
|
[19] |
ZITOUNI B, ANDREADIS G M, HOCINE B M, et al. Two-dimensional numerical study of temperature field in an anode supported planar SOFC: effect of the chemical reaction[J]. International Journal of Hydrogen Energy, 2011, 36 (6): 4228-4235.
|
[20] |
BRAUN R J, KLEIN S A, REINDL D T. Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications[J]. Journal of Power Sources, 2006, 158 (2): 1290-1305.
|