CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 341-346.doi: 10.11949/j.issn.0438-1157.20151753

Previous Articles     Next Articles

Anodic behavior of Fe in acidic AlCl3-EMIC ionic liquid

YANG Yang, XUE Dongpeng, LING Guoping   

  1. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2015-11-23 Revised:2015-12-07 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51271166).


The anodic behavior of Fe in 2:1 acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride (AlCl3-EMIC) ionic liquid was investigated in this paper. Anodic polarization and chronoamperometry was measured using three-electrode system. The valence state of dissolved Fe was calculated by potentiostatic process. The surface morphologies of Fe were characterized using a scanning electron microscopy (SEM). The results showed that the oxide film would restrain the dissolution of Fe. After the oxide film was removed, Fe began to dissolve at the potential of -0.35 V versus Pt. The anodic current density increased rapidly to a maximum with the positive shift of potential and than decreased abruptly. The product existed in the form of Fe(Ⅱ). After galvanostatic process at 2 mA·cm-2, the surface of Fe showed a pitting morphology, which became homogeneous as time prolonged. With a larger anodic current applied (15 mA·cm-2), no obvious corrosion occurred on the surface of Fe electrode with precipitate formed.

Key words: Fe, AlCl3-EMIC ionic liquid, anodic behavior

CLC Number: 

  • TQ153
[1] SEDDON K R. Ionic liquids for clean technology[J]. J. Chem. Technol. Biot., 1997, 68(4):351-356.
[2] COMPTOM D L, LASZLO J A. Loss of cytochrome c Fe(Ⅲ)/Fe(Ⅱ) redox couple in ionic liquids[J]. J. Electroanal. Chem., 2003, 553:187-190.
[3] MCFARLANE J, RIDENOUR W B, LUO H, et al. Room temperature ionic liquids for separating organics from produced water[J]. Sep. Sci. Technol., 2005, 40(6):1245-1265.
[4] RAUT D G, SUNDMAN O, SU W, et al. A morpholinium ionic liquid for cellulose dissolution[J]. Carbohyd. Polym., 2015, 130:18-25.
[5] TSENG C, CHANG J, CHEN J, et al. Corrosion behaviors of materials in aluminum chloride-1-ethyl-3-methylimidazolium chloride ionic liquid[J]. Electrochem. Commun., 2010, 12(8):1091-1094.
[6] LIN P, SUN I, CHANG J, et al. Corrosion characteristics of nickel, copper, and stainless steel in a Lewis neutral chloroaluminate ionic liquid[J]. Corros. Sci., 2011, 53(12):4318-4323.
[7] WANG Y, LEE T, LIN J, et al. Corrosion properties of metals in dicyanamide-based ionic liquids[J]. Corros. Sci., 2014, 78:81-88.
[8] MOUSTAFA E M, MANN O, FUERBETH W, et al. Electrochemical behaviour of iron in a third-generation ionic liquid:cyclic voltammetry and micromachining investi-gations[J]. Chemphyschem., 2009, 10(17):3090-3096.
[9] ABBOTT A P, CAPPER G, MCKENZIE K J, et al. Electropolishing of stainless steels in a choline chloride based ionic liquid:an electrochemical study with surface characterisation using SEM and atomic force microscopy[J]. Phys. Chem. Chem. Phys., 2006, 8(36):4214-4221.
[10] LIU Q X, EL ABEDIN S Z, ENDRES F. Electroplating of mild steel by aluminium in a first generation ionic liquid:a green alternative to commercial Al-plating in organic solvents[J]. Surf. Coat. Tech., 2006, 201(3/4):1352-1356.
[11] NANJUNDIAH C, SHIMIZU K, OSTERYOUNG R A. Electrochemical studies of Fe(Ⅱ) and Fe(Ⅲ) in an aluminum-chloride butylpyridinium chloride ionic liquid[J]. J. Electrochem. Soc., 1982, 129(11):2474-2480.
[12] HUANG H, SU C, KAO C, et al. Electrochemical study of Pt and Fe and electrodeposition of PtFe alloys from air-and water-stable room temperature ionic liquids[J]. J. Electroanal. Chem., 2010, 650(1):1-9.
[13] ZHU Y, KATAYAMA Y, MIURA T. Electrochemistry of Fe(Ⅱ)/Fe in a hydrophobic amide-type ionic liquid[J]. J. Electrochem. Soc., 2012, 159(12):D699-D704.
[14] GEETHA S, TRIVEDI D C. Properties and applications of chloroaluminate as room temperature ionic liquid[J]. Bull. Electrochem., 2003, 19(1):37-48.
[15] XU B, ZHANG M, LING G. Electrolytic etching of AZ91D Mg alloy in AlCl3-EMIC ionic liquid for the electrodeposition of adhesive Al coating[J]. Surf. Coat. Tech., 2014, 239:1-6.
[16] CHEN J, XU B, LING G. Amorphous Al-Mn coating on NdFeB magnets:electrodeposition from AlCl3-EMIC-MnCl2 ionic liquid and its corrosion behavior[J]. Mater. Chem. Phys., 2012, 134(2/3):1067-1071.
[17] DING J, XU B, LING G. Al-Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance[J]. Appl. Surf. Sci., 2014, 305:309-313.
[18] XU B, CHEN J, LING G. Viscous layer formed in the anodic electrolytic etching of reactive metals in ionic liquid[J]. Electrochem. Solid. ST., 2012, 15(1):D1-D3.
[19] XU B, QU R, LING G. Anodic behavior of Mg in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid[J]. Electrochim. Acta, 2014, 149:300-305.
[20] QU R, JIANG Y, XU B, et al. Anodic behavior of neodymium in acidic AlCl3-1-ethyl-3-methyl-imidazolium chloride ionic liquid[J]. J. Rare Earth, 2015, 33(7):776-782.
[21] WILKES J S, LEVISKY J A, WILSON R A, et al. Dialkylimidazolium chloroaluminate melts-a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis[J]. Inorg. Chem., 1982, 21(3):1263-1264.
[22] PILLING N B, BEDWORTH R E. The oxidation of metals at high temperatures[J]. J. Inst. Met., 1923, 29:529-582.
[23] DENT A J, SEDDON K R, WELTON T. The structure of halogenometallate complexes dissolved in both basic and acidic room-temperature halogenoaluminate(Ⅲ) ionic liquids, as determined by EXAFS[J]. J. Chem. Soc., Chem. Commun., 1990(4):315-316.
[24] MELTON T J, JOYCE J, MALOY J T, et al. Electrochemical studies of sodium-chloride as a Lewis buffer for room-temperature chloroaluminate molten-salts[J]. J. Electrochem. Soc., 1990, 137(12):3865-3869.
[25] LAHER T M, HUSSEY C L. Electrochemical studies of chloro complex-formation in low-temperature chloroalu-minate melts(1):Iron(Ⅱ), iron(Ⅲ), and nickel(Ⅱ)[J]. Inorg. Chem., 1982, 21(11):4079-4083.
[26] LIPSZTAJN M, OSTERYOUNG R A. Electrochemistry in neutral ambient-temperature ionic liquids (1):Studies of iron(Ⅲ), neodymium(Ⅲ), and lithium(I)[J]. Inorg. Chem., 1985, 24(5):716-719.
[1] Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr() in water [J]. CIESC Journal, 2023, 74(5): 2197-2206.
[2] Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227.
[3] Jian ZHAO, Xingchao ZHOU, Dan XIA, Hang DONG. Study on influence of mechanical stirring on heat transfer characteristics during jet heating of crude oil storage tank [J]. CIESC Journal, 2023, 74(5): 1982-1999.
[4] Junhua DING, Shurong YU, Shipeng WANG, Xianzhi HONG, Xin BAO, Xuexing DING. Flow simulation and sealing performance test of ultra-high speed dry gas seal under multiple effects [J]. CIESC Journal, 2023, 74(5): 2088-2099.
[5] Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981.
[6] Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548.
[7] Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456.
[8] Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754.
[9] Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826.
[10] Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650.
[11] Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569.
[12] Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488.
[13] Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246.
[14] Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072.
[15] Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160.
Full text



No Suggested Reading articles found!