[1] |
李志明, 孔令富. 基于SVM的软测量在原油含水率估算中的应用[J]. 燕山大学学报, 2006, 30(4): 328-333. LI Z M, KONG L F. Application of soft sensor based on SVM on estimation of water cut of crude oil[J]. Journal of Yanshan University, 2006, 30(4): 328-333.
|
[2] |
王丽娜, 刘翠玲. 基于CPN网络井口计量原油含水率预测模型[J]. 东北石油大学学报, 2009, 33(6): 101-104. WANG L N, LIU C L. Model for prediction of crude oil water content at wellhead metering based on CPN neural network[J]. Journal of Daqing Petroleum Institute, 2009, 33(6): 101-104.
|
[3] |
吴良海. 基于粒子群优化RBF神经网络原油含水率预测[J]. 计算机仿真, 2010, 27(5): 261-263. WU L H. Prediction of crude oil moisture based on RBF neural network optimized by PSO[J]. Computer Simulation, 2010, 27(5): 261-263.
|
[4] |
刘翠玲, 张路路, 王进旗, 等. 基于FOA-GRNN油井计量原油含水率的预测[J]. 计算机仿真, 2012, 29(11): 243-246. LIU C L, ZHANG L L, WANG J Q, et al. Application of FOA-GRNN to prediction of moisture content in crude oil of wellhead metering[J]. Computer Simulation, 2012, 29(11): 243-246.
|
[5] |
王振雷, 唐苦, 王昕. 一种基于D-S和ARIMA的多模型软测量方法[J]. 控制与决策, 2014, 29(7): 1160-1166. WANG Z L, TANG K, WANG X. A multi-model soft sensing method based on D-S and ARIMA model[J]. Control and Decision, 2014, 29(7):1160-1166.
|
[6] |
唐苦, 王昕, 王振雷. 基于证据合成规则的多模型软测量[J]. 控制理论与应用, 2014, 31(5):632-637. TANG K, WANG X, WANG Z L. Multi-model soft sensor based on Dempster-Shafer rule[J]. Control Theory & Applications, 2014, 31(5):632-637.
|
[7] |
梅从立, 杨铭, 刘国海. 基于证据合成的高斯过程回归多模型软测量方法[J]. 化工学报, 2015, 66(11): 4555-4564. MEI C L, YANG M, LIU G H. A multi-model based soft sensor using evidence theory and Gaussian process regression[J]. CIESC Journal, 2015, 66(11): 4555-4564.
|
[8] |
王开军, 张军英, 李丹, 等. 自适应仿射传播聚类[J]. 自动化学报, 2007, 33(12): 1242-1246. WANG K J, ZHANG J Y, LI D, et al. Adaptive affinity propagation clustering[J]. Acta Automatic Sinica, 2007, 33(12): 1242-1246.
|
[9] |
嵇小辅, 张翔. 基于FCM与集成高斯过程回归的赖氨酸发酵软测量[J]. 智能系统学报, 2015, 10(1): 156-162. JI X F, ZHANG X. Soft measurement of lysine fermentation based on FCM and integrated Gaussian process regression[J]. CAAI Transactions on Intelligent Systems, 2015, 10(1): 156-162.
|
[10] |
VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17(4): 395-416.
|
[11] |
HU H, WANG X, YANG Z, et al. A spectral clustering approach to identifying cuts in wireless sensor networks[J]. Sensors Journal, IEEE, 2015, 15(3): 1838-1848.
|
[12] |
WANG S, LU J, GU X, et al. Unsupervised discriminant canonical correlation analysis based on spectral clustering[J]. Neurocomputing, 2016, 171: 425-433.
|
[13] |
LIU H, ZHAO F, JIAO L. Fuzzy spectral clustering with robust spatial information for image segmentation[J]. Applied Soft Computing, 2012, 12(11): 3636-3647.
|
[14] |
MEHRKANOON S, ALZATE C, MALL R, et al. Multiclass semisupervised learning based upon kernel spectral clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(4): 720-733.
|
[15] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
|
[16] |
BREABAN M, LUCHIAN H. A unifying criterion for unsupervised clustering and feature selection[J]. Pattern Recognition, 2011, 44(4): 854-865.
|
[17] |
YANG X S. Nature-inspired Metaheuristic Algorithms[M]. Beckington: Luniver Press, 2010.
|
[18] |
LONG N C, MEESAD P, UNGER H. A highly accurate firefly based algorithm for heart disease prediction[J]. Expert Systems with Applications, 2015, 42(21): 8221-8231.
|
[19] |
SAHU R K, PANDA S, PADHAN S. A hybrid firefly algorithm and pattern search technique for automatic generation control of multi area power systems[J]. International Journal of Electrical Power & Energy Systems, 2015, 64: 9-23.
|
[20] |
OLATOMIWA L, MEKHILEF S, SHAMSHIRBAND S, et al. A support vector machine-firefly algorithm-based model for global solar radiation prediction[J]. Solar Energy, 2015, 115: 632-644.
|
[21] |
BAYKASOGLU A, OZSOYDAN F B. Adaptive firefly algorithm with chaos for mechanical design optimization problems[J]. Applied Soft Computing, 2015, 36: 152-164.
|
[22] |
YU S, ZHU S, MA Y, et al. Enhancing firefly algorithm using generalized opposition-based learning[J]. Computing, 2015: 1-14.
|
[23] |
于剑, 程乾生. 模糊聚类方法中的最佳聚类数的搜索范围[J]. 中国科学(E辑), 2002, 32(2): 274-280. YU J, CHEN Q S. Search range of the optimal cluster number in fuzzy clustering [J]. Science in China (Series E), 2002, 32(2): 274-280.
|
[24] |
王超, 王建辉, 顾树生, 等. 改进式混合增量极限学习机算法[J]. 控制与决策, 2015, 30(11): 1981-1986. WANG C, WANG J H, GU S S, et al. Improved hybrid incremental extreme learning machine algorithm[J]. Control & Decision, 2015, 30(11): 1981-1986.
|
[25] |
田中大, 李树江, 王艳红, 等. 短期风速时间序列混沌特性分析及预测[J]. 物理学报, 2015, 64(3): 030506-1-12. TIAN Z D, LI S J, WANG Y H, et al. Chaotic characteristics analysis and prediction for short-term wind speed time series[J]. Acta Phys. Sin., 2015, 64(3): 030506-1-12.
|
[26] |
李翔宇, 高宪文, 侯延彬. 基于在线动态高斯过程回归抽油井动液面软测量建模[J]. 化工学报, 2015, 6(6): 2150-2158. LI X Y, GAO X W, HOU Y B. Online dynamic Gaussian process regression for dynamic liquid level soft sensing of sucker-rod pumping well[J]. CIESC Journal, 2015, 6(6): 2150-2158.
|
[27] |
王通, 高宪文, 刘文芳. 自适应软测量方法在动液面预测中的研究与应用[J]. 化工学报, 2014, 65(12): 4898-4904. WANG T, GAO X W, LIU W F. Adaptive soft sensor method and application in determination of dynamic fluid levels[J]. CIESC Journal, 2014, 65(12): 4898-4904.
|