[1] |
刘学艺, 刘祥官, 王文慧. 贝叶斯网络在高炉铁水硅含量预测中的应用[J]. 钢铁, 2005, 40(3): 17-20. LIU X Y, LIU X G, WANG W H. Application of Bayesian network to predicting silicon content in hot metal[J]. Iron and Steel, 2005, 40(3): 17-20.
|
[2] |
TAKAHASHI H, KAWAI H, KOBAYASHI M, et al. Two dimensional cold model study on unstable solid descending motion and control in blast furnace operation with low reducing agent rate[J]. ISIJ International, 2005, 45(10): 1386-1395.
|
[3] |
NOGAMI H, CHU M S, YAGI J. Multi-dimensional transient mathematical simulator of blast furnace process based on multi-fluid and kinetic theories[J]. Computers & Chemical Engineering, 2005, 29(11): 2438-2448.
|
[4] |
CHU M S, YANG X F, SHEN F M. Numerical simulation of innovative operation of blast furnace based on multi-fluid model[J]. Journal of Iron and Steel Research, International, 2006, 13(6): 8-15.
|
[5] |
郜传厚, 渐令, 陈积明, 等. 复杂高炉炼铁过程的数据驱动建模及预测算法[J]. 自动化学报, 2009, 35(6): 725-730. GAO C H, JIAN L, CHEN J M, et al. Data-driven modeling and predictive algorithm for complex blast furnace ironmaking process[J]. Acta Automatica Sinica, 2009, 35(6): 725-730.
|
[6] |
SAXÉN H. Short-term prediction of silicon content in pig iron[J]. Canadian Metallurgical Quarterly, 1994, 33(4): 319-326.
|
[7] |
SAXÉN H, PETTERSSON F. Nonlinear prediction of the hot metal silicon content in the blast furnace[J]. ISIJ International, 2007, 47(12): 1732-1737.
|
[8] |
NURKKALA A, PETTERSSON F, SAXÉN H. Nonlinear modeling method applied to prediction of hot metal silicon in the ironmaking blast furnace[J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9236-9248.
|
[9] |
LUO S H, GAO C H, ZENG J S, et al. Blast furnace system modeling by multivariate phase space reconstruction and neural networks[J]. Asian Journal of Control, 2013, 15(2): 553-561.
|
[10] |
ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
|
[11] |
CHU Y X, GAO C H. Data-based multiscale modeling for blast furnace system[J]. AIChE Journal, 2014, 60(6): 2197-2210.
|
[12] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1998, 454(1971): 903-995.
|
[13] |
YAN Q Y, LIU Y Q. A Predictive dynamic neural network model based on principal component analysis (PCA) and its application[J]. Applied Mechanics and Materials, 2012, 127: 19-24.
|
[14] |
WANG J J, ZHANG W Y, LI Y N, et al. Forecasting wind speed using empirical mode decomposition and Elman neural network[J]. Applied Soft Computing, 2014, 23: 452-459.
|
[15] |
KENNEDY J. Encyclopedia of Machine Learning[M]. USA: Springer, 2010.
|
[16] |
GAO C H, ZENG J S, ZHOU Z M. Identification of multiscale nature and multiple dynamics of the blast furnace system from operating data[J]. AIChE Journal, 2011, 57(12): 3448-3458.
|
[17] |
赵敏. 高炉冶炼过程的复杂机理及其预测研究[D]. 杭州: 浙江大学, 2008. ZHAO M. Complexity mechanism and predictive research for BF ironmaking process[D]. Hangzhou: Zhejiang University, 2008.
|
[18] |
GUO Z H, ZHAO W G, LU H Y, et al. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model[J]. Renewable Energy, 2012, 37(1): 241-249.
|
[19] |
时小虎. Elman神经网络与进化算法的若干理论研究及应用[D]. 长春: 吉林大学, 2006. SHI X H. Some theoretical studies of Elman neural networks and evolutionary algorithms and their applications[D]. Changchun: Jilin University, 2006.
|
[20] |
安剑奇, 陈易斐, 吴敏. 基于改进支持向量机的高炉一氧化碳利用率预测方法[J]. 化工学报, 2015, 66(1): 206-214. DOI: 10.11949/j.issn.0438-1157.20141482. AN J Q, CHEN Y F, WU M. A prediction method for carbon monoxide utilization ratio of blast furnace based on improved support vector regression[J]. CIESC Journal, 2015, 66(1): 206-214. DOI: 10.11949/j.issn.0438-1157.20141482.
|