[1] |
周东华, 李钢, 李元. 数据驱动的工业过程故障诊断技术: 基于主成分分析与偏最小二乘的方法[M]. 北京: 科学出版社, 2011: 1-9. ZHOU D H, LI G, LI Y. Industrial Process Fault Diagnosis Technology of Data Driven: Based on Principal Component Analysis and Partial Least Squares Method[M]. Beijing: Science Press, 2011: 1-9.
|
[2] |
马贺贺, 胡益, 侍洪波. 基于马氏距离局部离群因子方法的复杂化工过程故障检测[J]. 化工学报, 2013, 64 (5): 1674-1682. DOI: 10.3969/j.issn.0438-1157.2013.05.024. MA H H, HU Y, SHI H B. Fault detection of complex chemical processes using Mahalanobis distance-based local outlier factor[J]. CIESC Journal, 2013, 64(5): 1764-1682. DOI: 10.3969/j.issn.0438-1157.2013.05.024.
|
[3] |
韩敏, 张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66 (6): 2139-2149. DOI: 10.11949/j.issn.0438-1157. 20141378. HAN M, ZHANG Z K. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. CIESC Journal, 2014, 66(6): 2139-2149. DOI: 10.11949/j.issn.0438-1157.20141378.
|
[4] |
宋冰, 马玉鑫, 方永锋, 等. 基于LSNPE算法的化工过程故障检测[J]. 化工学报, 2014, 65 (2): 620-627. DOI: 10.3969/j.issn.0438-1157.2014.02.036. SONG B, MA Y X, FANG Y F, et al. Fault detection for chemical process based on LSNPE method[J]. CIESC Journal, 2014, 65(2): 620-627. DOI: 10.3969/j.issn.0438-1157.2014.02.036.
|
[5] |
GARCIA-ALVAREZ D, FUENTE M J, SAINZ G I. Fault detection and isolation in transient states using principal component analysis[J]. Journal of Process Control, 2012, 22(3): 551-563. DOI: 10.1016/j. jprocont.2012.01.007.
|
[6] |
YIN S, DING S X, HAGHANI A, et al. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22(9): 1567-1581. DOI: 10.1016/j.jprocont.2012.06.009.
|
[7] |
徐圆, 刘莹, 朱群雄. 基于多元时滞序列驱动的复杂过程故障预测方法应用研究[J]. 化工学报, 2013, 64 (12): 4290-4295. DOI: 10.3969/j.issn.0438-1157.2013.12.003. XU Y, LIU Y, ZHU Q X. A complex process fault prognosis approach based multivariate delayed sequences[J]. CIESC Journal, 2013, 64(12): 4290-4295. DOI: 10.3969/j.issn.0438-1157.2013.12.003.
|
[8] |
XIONG L, LIANG J, QIAN J X. Multivariate statistical process monitoring of an industrial polypropylene catalyzer reactor with component analysis and kernel density estimation[J]. Chinese Journal of Chemical Engineering, 2007, 15(4): 524-532. DOI: 10.1016/S1004-9541(07)60119-0.
|
[9] |
NOMIKOS P, MACGREGOR J F. Multivariate SPC charts for monitoring batch processes[J]. Technometrics, 1995, 37: 41-59. DOI: 10.2307/1269152.
|
[10] |
DONG D, MCAVOY T J. Nonlinear principal component analysis-based on principal curves and neural networks[J]. Computer & Chemical Engineering, 1996, 20(1): 65-78. DOI: 10.1016/0098-1354(95)00003-K.
|
[11] |
SCHOLKOPF B, SMOLA A, MULLER K. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10: 1299-1319. DOI: 10.1162/089976698300017467.
|
[12] |
LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59: 223-234. DOI:10.1016/j.ces.2003.09.012.
|
[13] |
CHO J H, LEE J M, CHOI S W, et al. Fault identification for process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2005, 6: 279-288. DOI:10.1016/j.ces.2004.08.007.
|
[14] |
JENSSEN R. Kernel entropy component analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 847-860. DOI: 10.1109/TPAMI.2009.100.
|
[15] |
JIANG Q C, YAN X F, LÜ Z M, et al. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure[J]. Korean Journal of Chemical Engineering, 2013, 30(6): 1181-1186. DOI: 10.1007/s11814-013-0034-7.
|
[16] |
RENYI A. On Measures of Entropy and Information[C/OL]//Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Oakland: University of California Press, 1961, 1: 547-561. http://projecteuclid.org/euclid.bsmsp/1200512181.
|
[17] |
JENSSEN R, PRINCIPE J C, ERDOGMUS D. The Cauchy-Schwarz divergence and Parzen windowing: connections to graph theory and Mercer kernel[J]. Journal of the Franklin Institute, 2006, 343(6): 614-629. DOI: 10.1016/j.jfranklin.2006.03.018.
|
[18] |
JENSSEN R, ELTOFT T. A new information theoretic analysis of sum-of-squared-error kernel clustering[J]. Neurocomputing, 2008, 72(1/2/3): 23-32. DOI: 10.1016/j.neucom.2008.03.017.
|
[19] |
LAU C K, GHOSH K, HUSSAIN M A, et al. Fault diagnosis of Tennessee Eastman process with multi-scale PCA and ANFIS[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 120: 1-14. DOI: 10.1016/j.chemolab.2012.10.005.
|
[20] |
MAHADEVAN S, SHAH A L. Fault detection and diagnosis in process data using one-class support vector machines[J]. Journal of Process Control, 2009, 19: 1627-1639. DOI: 10.1016/j.jprocont.2009. 07.011.
|
[21] |
YANG Y H, LI X L, LIU X Z, et al. Wavelet kernel entropy component analysis with application to industrial process monitoring[J]. Neurocomputing, 2015, 147: 395-402. DOI: 10.1016/j.neucom. 2014.06.045.
|