[1] |
SUN X. Active-matting-based object tracking with color cues[J]. Signal Image and Video Processing, 2014, 8: 85-94.
|
[2] |
COMANICIU D. Mean shift: a robust approach toward feature space analysis[J]. Pattern Analysis and Machine Intelligence, 2002, 24 (5): 603-619.
|
[3] |
HAN H, DING Y S, HAO K R. An evolutionary particle filter with the immune genetic algorithm for intelligent video target tracking[J]. Computers and Mathematics with Applications, 2011, 62 (7): 2685-2695.
|
[4] |
HAN H, DING Y S, HAO K R. Particle filter for state estimation of jump Markov nonlinear system with application to multi-targets tracking[J]. International Journal of Systems Science, 2013, 44 (7): 1333-1343.
|
[5] |
KALAL Z. P-N learning: bootstrapping binary classifiers by structural constraints[C]//Proc. 23rd Intern. IEEE Computer Vision and Pattern Recognition. San Francisco, 2010.
|
[6] |
KALAL Z. Tracking-learning-detection[J]. The IEEE Pattern Analysis and Machine Intelligence, 2012, 34 (7): 1409-1422.
|
[7] |
ZHAO L Q, WANG J L, Y T. Nonlinear state estimation for fermentation process using cubature Kalman filter to incorporate delayed measurements[J]. Chinese Journal of Chemical Engineering, 2015, 23 (11): 1801-1810.
|
[8] |
LI L L, ZHOU D H, WANG Y Q, et al. Unknown input extended Kalman filter and applications in nonlinear fault diagnosis[J]. Chinese Journal of Chemical Engineering, 2005, 13 (6): 783-790.
|
[9] |
BERNARDIN K. Evaluating multiple object tracking performance: the CLEAR MOT metrics[J]. EURASIP Journal on Image and Video Processing, 2008: 1-10.
|
[10] |
GAO L. Communication mechanisms in ecological network-based grid middleware for service emergence[J]. Information Sciences, 2007, 177 (3): 722-733.
|
[11] |
GAO L. A web service trust evaluation model based on small-world networks[J]. Knowledge-Based Systems, 2014, 57: 146-162.
|
[12] |
GRAY D, BRENNAN S, TAO H. Evaluating appearance models for recognition, reacquisition, and tracking[C]//Proc. 11th Intern. IEEE Performance Evaluation of Tracking and Surveillance. Rio de Janeiro, 2007.
|
[13] |
JAVED O, SHAFIQUE K, RASHEED Z. Modeling inter-camera space time and appearance relationships for tracking across non-overlapping views[J]. Computer Vision and Image Understanding, 2008, 109 (2): 146-162.
|
[14] |
REDDY V, SANDERSON C, LOVELL B C. Improved foreground detection via block-based classifier cascade with probabilistic decision integration[J]. Circuits and Systems for Video Technology, 2013, 23 (1): 83-93.
|
[15] |
CHEN W, WANG X, WANG H, et al. A hybrid approach using map-based estimation and class-specific hough forest for pedestrian counting and detection[J]. IET Image Process, 2014, 8 (12): 771-781.
|
[16] |
MADDEN C, CHENG E D, PICCARDI M. Tracking people across disjoint camera views by an illumination-tolerant appearance representation[J]. Machine Vision and Applications, 2007, 18: 233-247.
|
[17] |
SHITRIT H B. Tracking multiple people under global appearance constraints[J]. Computer Vision, 2011: 137-144.
|
[18] |
POLIKAR R, DEPASQUALE J, SYED H. Learn++. MF: a random subspace approach for the missing feature problem[J]. Pattern Recognition, 2010, 43 (11): 3817-3832.
|
[19] |
BOUKHAROUBA K, BAKO L, LECOEUCHE S. Incremental and decremental multi-category classification by support vector machines[J]. Machine Learning and Applications, 2009: 294-300.
|
[20] |
KARAMI A H. Online adaptive motion model-based target tracking using local search algorithm[J]. Engineering Applications of Artificial Intelligence, 2014, 37: 307-318.
|
[21] |
GILBERT A, BOWDEN R. Incremental, scalable tracking of objects inter camera[J]. Computer Vision and Image Understanding, 2008, 111 (1): 43-58.
|
[22] |
YU Y, HARWOOD D. Human appearance modeling for matching across video sequences[J]. Machine Vision Applications, 2007, 18 (3): 139-149.
|