[1] |
JOYE I J, MCCLEMENTS D J. Biopolymer-based nanoparticles and microparticles:fabrication, characterization, and application[J]. Current Opinion in Colloid & Interface Science, 2014, 19(5):417-427.
|
[2] |
IKKALA O, TEN BRINKE G. Functional materials based on self-assembly of polymeric supramolecules[J]. Science, 2002, 295(5564):2407-2409.
|
[3] |
WHITESIDES G M, BONCHEVA M. Beyond molecules:self-assembly of mesoscopic and macroscopic components[J]. Proceedings of the National Academy of Sciences, 2002, 99(8):4769-4774.
|
[4] |
WHITESIDES G M, GRZYBOWSKI B. Self-assembly at all scales[J]. Science, 2002, 295(5564):2418-2421.
|
[5] |
SCHMITT C, BOVAY C, VUILLIOMENET A M, et al. Multiscale characterization of individualized β-lactoglobulin microgels formed upon heat treatment under narrow pH range conditions[J]. Langmuir, 2009, 25(14):7899-7909.
|
[6] |
CHEN N, LIN L, SUN W, et al. Stable and pH-sensitive protein nanogels made by self-assembly of heat denatured soy protein[J]. Journal of Agricultural and Food Chemistry, 2014, 62(39):9553-9561.
|
[7] |
HO K M, LI W Y, LEE C H, et al. Mechanistic study of the formation of amphiphilic core-shell particles by grafting methyl methacrylate from polyethylenimine through emulsion polymerization[J]. Polymer, 2010, 51(15):3512-3519.
|
[8] |
TORCHILIN V P. Structure and design of polymeric surfactant-based drug delivery systems[J]. Journal of Controlled Release, 2001, 73(2):137-172.
|
[9] |
WANG D, WANG X. Amphiphilic azo polymers:molecular engineering, self-assembly and photoresponsive properties[J]. Progress in Polymer Science, 2013, 38(2):271-301.
|
[10] |
KATO A, MINAKI K, KOBAYASHI K. Improvement of emulsifying properties of egg white proteins by the attachment of polysaccharide through Maillard reaction in a dry state[J]. Journal of Agricultural and Food Chemistry, 1993, 41(4):540-543.
|
[11] |
WU N N, ZHANG J B, TAN B, et al. Characterization and interfacial behavior of nanoparticles prepared from amphiphilic hydrolysates of β-conglycinin-dextran conjugates[J]. Journal of Agricultural and Food Chemistry, 2014, 62(52):12678-12685.
|
[12] |
LI J, YU S, YAO P, et al. Lysozyme-dextran core-shell nanogels prepared via a green process[J]. Langmuir, 2008, 24(7):3486-3492.
|
[13] |
KANG I, YOON J, LEE Y, et al. Stable vesicle assemblies on surfaces of hydrogel nanoparticles formed from a polysaccharide modified with lipid moieties[J]. Chemical Engineering Journal, 2015, 263:38-44.
|
[14] |
MACKINNON N, GUÉRIN G, LIU B, et al. Liposome-hydrogel bead complexes prepared via biotin-avidin conjugation[J]. Langmuir, 2009, 25(16):9413-9423.
|
[15] |
张曦. 大分子拥挤环境下葡聚糖对大豆7S球蛋白的物性修饰研究[D]. 广州:华南理工大学, 2013. ZHANG X. Soy β-conglycinin modified by dextran in macromolecular crowding condition[D]. Guangzhou:South China University of Technology, 2013.
|
[16] |
ZHANG X, QI J R, LI K K, et al. Characterization of soy β-conglycinin-dextran conjugate prepared by Maillard reaction in crowded liquid system[J]. Food Research International, 2012, 49:648-654.
|
[17] |
WENG J, QI J, YIN S, et al. Fractionation and characterization of soy β-conglycinin-dextran conjugates via macromolecular crowding environment and dry heating[J]. Food Chemistry, 2016, 196:1264-1271.
|
[18] |
NAGANO T, HIROTSUKA M, MORI H, et al. Dynamic viscoelastic study on the gelation of 7S globulin from soybeans[J]. Journal of Agricultural and Food Chemistry, 1992, 40(6):941-944.
|
[19] |
LAEMMLI U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227(5259):680-685.
|
[20] |
HASKARD C A, LI C E C Y. Hydrophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANS-) fluorescent probes[J]. Journal of Agricultural and Food Chemistry, 1998, 46(7):2671-2677.
|
[21] |
KATO A, MIFURU R, MATSUDOMI N, et al. Functional casein-poly saccharide conjugates prepared by controlled dry heating[J]. Bioscience, Biotechnology, and Biochemistry, 1992, 56(4):567-571.
|
[22] |
IWABUCHI S, YAMAUCHI F. Determination of glycinin and beta-conglycinin in soybean proteins by immunological methods[J]. Journal of Agricultural and Food Chemistry, 1987, 35(2):200-205.
|
[23] |
ZHANG K, FANG H, SHEN G, et al. Well-defined cationic shell crosslinked nanoparticles for efficient delivery of DNA or peptide nucleic acids[J]. Proceedings of the American Thoracic Society, 2009, 6(5):450-457.
|
[24] |
ZHOU H, SUN X, ZHANG L, et al. Fabrication of biopolymeric complex coacervation core micelles for efficient tea polyphenol delivery via a green process[J]. Langmuir, 2012, 28:14553-14561.
|
[25] |
YU S, HU J, PAN X, et al. Stable and pH-sensitive nanogels prepared by self-assembly of chitosan and ovalbumin[J]. Langmuir, 2006, 22(6):2754-2759.
|
[26] |
LIN W, GARNETT M C, DAVIES M C, et al. Preparation of surface-modified albumin nanospheres[J]. Biomaterials, 1997, 18(7):559-565.
|
[27] |
HARADA A, KATAOKA K. Novel polyion complex micelles entrapping enzyme molecules in the core:preparation of narrowly-distributed micelles from lysozyme and poly (ethylene glycol)-poly (aspartic acid) block copolymer in aqueous medium[J]. Macromolecules, 1998, 31:288-294.
|