CIESC Journal ›› 2016, Vol. 67 ›› Issue (8): 3160-3169.DOI: 10.11949/j.issn.0438-1157.20160352
Previous Articles Next Articles
QIN Zhengxing, SHEN Baojian
Received:
2016-03-28
Revised:
2016-05-06
Online:
2016-08-05
Published:
2016-08-05
Supported by:
supported by the National Basic Research Program of China (2012CB215001) and the National Natural Science Foundation of China (U1462202).
覃正兴, 申宝剑
通讯作者:
申宝剑
基金资助:
国家重点基础研究发展计划项目(2012CB215001);国家自然科学基金项目(U1462202)。
CLC Number:
QIN Zhengxing, SHEN Baojian. Dealumination, silicon reinsertion, and secondary pore formation in steaming of zeolite Y[J]. CIESC Journal, 2016, 67(8): 3160-3169.
覃正兴, 申宝剑. 水热处理过程中Y分子筛的骨架脱铝、补硅及二次孔的形成[J]. 化工学报, 2016, 67(8): 3160-3169.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20160352
[1] | VERMEIREN W,GILSON J P.Impact of zeolites on the petroleum and petrochemical industry[J].Top.Catal.,2009,52:1131-1161. |
[2] | NG E P,CHATEIGNER D,BEIN T,et al.Capturing ultrasmall EMT zeolite from template-free systems[J].Science,2012,335:70-73. |
[3] | AWALA H,GILSON J P,RETOUX R,et al.Template-free nanosized faujasite-type zeolites[J].Nat.Mater,2015,14:447-451. |
[4] | FENG G,CHENG P,YAN W,et al.Accelerated crystallization of zeolites via hydroxyl free radicals[J].Science,2016,351:1188-1191. |
[5] | MARTINEZ J G,LI K H,KRISHNAIAH G.A mesostructured Y zeolite as a superior FCC catalyst-from lab to refinery[J].Chem.Commun.,2012,48:11841-11843. |
[6] | DE JONG K P,ZE?EVI? J,FRIEDRICH H,et al.Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts[J].Angewandte Chemie International Edition,2010,49:10074-10078. |
[7] | VAN AELST J,VERBOEKEND D,PHILIPPAERTS A,et al.Catalyst design by NH4ClOH treatment of USY zeolite[J].Adv.Funct.Mater.,2015,25:7130-7144. |
[8] | ENNAERT T,VAN AELST J,DIJKMANS J,et al.Potential and challenges of zeolite chemistry in the catalytic conversion of biomass[J].Chem.Soc.Rev.,2016,45:584-611. |
[9] | WALES D J,GRAND J,TING V P,et al.Gas sensing using porous materials for automotive applications[J].Chem.Soc.Rev.,2015,44:4290-4321. |
[10] | RAHIMI M,NG E P,BAKHTIARI K,et al.Zeolite nanoparticles for selective sorption of plasma proteins[J].Scientific Reports,2015,5:17259. |
[11] | VERBOEKEND D,NUTTENS N,LOCUS R,et al.Synthesis,characterisation,and catalytic evaluation of hierarchical faujasite zeolites:milestones,challenges,and future directions[J].Chem.Soc.Rev.,2016,45:3331-3352. |
[12] | DELPRATO F,DELMOTTE L,GUTH J L,et al.Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates[J].Zeolites,1990,10(6):546-552. |
[13] | YUAN D,HE D,XU S,et al.Imidazolium-based ionic liquids as novel organic SDA to synthesize high-silica Y zeolite[J].Microporous Mesoporous Mater.,2015,204:1-7. |
[14] | VAN DONK S,JANSSEN A H,BITTER J H,et al.Generation,characterization,and impact of mesopores in zeolite catalysts[J].Catalysis Reviews:Science and Engineering,2003,45:297-319. |
[15] | KERR G T.Intracrystalline rearrangement of constitutive water in hydrogen zeolite Y[J].The Journal of Physical Chemistry,1967,71:4155-4156. |
[16] | KERR G T.Chemistry of crystalline aluminosilicates (Ⅶ):Thermal decomposition products of ammonium zeolite Y[J].J.Catal.,1969,15:200-204. |
[17] | AGOSTINI G,LAMBERTI C,PALIN L,et al.In situ XAS and XRPD parametric rietveld refinement to understand dealumination of Y zeolite catalyst[J].J.Am.Chem.Soc.,2009,132:667-678. |
[18] | YU Z,ZHENG A,WANG Q,et al.Insights into the dealumination of zeolite HY revealed by sensitivity-enhanced 27Al DQ-MAS NMR spectroscopy at high field[J].Angewandte Chemie International Edition,2010,49:8657-8661. |
[19] | MALOLA S,SVELLE S,BLEKEN F L,et al.Detailed reaction paths for zeolite dealumination and desilication from density functional calculations[J].Angewandte Chemie International Edition,2012,51:652-655. |
[20] | SILAGHI M C,CHIZALLET C,RAYBAUD P.Challenges on molecular aspects of dealumination and desilication of zeolites[J].Microporous Mesoporous Mater.,2014,191:82-96. |
[21] | SILAGHI M C,CHIZALLET C,PETRACOVSCHI E,et al.Regioselectivity of Al-O bond hydrolysis during zeolites dealumination unified by Brønsted-Evans-Polanyi relationship[J].ACS Catalysis,2015,5:11-15. |
[22] | NIELSEN M,BROGAARD R Y,FALSIG H,et al.Kinetics of zeolite dealumination:insights from H-SSZ-13[J].ACS Catalysis,2015,5:7131-7139. |
[23] | FLEISCH T H,MEYERS B L,RAY G J,et al.Hydrothermal dealumination of faujasites[J].J.Catal.,1986,99:117-125. |
[24] | WANG Q L,GIANNETTO G,TORREALBA M,et al.Dealumination of zeolites (Ⅱ):Kinetic study of the dealumination by hydrothermal treatment of a NH4ClNaY zeolite[J].J.Catal.,1991,130:459-470. |
[25] | RAY G J,MEYERS B L,MARSHALL C L.29Si and 27Al n.m.r.study of steamed faujasites-evidence for non-framework tetrahedrally bound aluminium[J].Zeolites,1987,7:307-310. |
[26] | PATZELOVÁ V,JAEGER N I.Texture of deep bed treated Y zeolites[J].Zeolites,1987,7:240-242. |
[27] | WOUTERS B H,CHEN T H,GROBET P J.Reversible tetrahedral-octahedral framework aluminum transformation in zeolite Y[J].J.Am.Chem.Soc.,1998,120:11419-11425. |
[28] | YU Z,LI S,WANG Q,et al.Brønsted/Lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy[J].The Journal of Physical Chemistry C,2011,115:22320-22327. |
[29] | LUTZ W,TOUFAR H,HEIDEMANN D,et al.Siliceous extra-framework species in dealuminated Y zeolites generated by steaming[J].Microporous Mesoporous Mater.,2007,104:171-178. |
[30] | LIU C,LI G,HENSEN E J M,et al.Nature and catalytic role of extraframework aluminum in faujasite zeolite:a theoretical perspective[J].ACS Catalysis,2015,5:7024-7033. |
[31] | DANILINA N,KRUMEICH F,CASTELANELLI S A,et al.Where are the active sites in zeolites? Origin of aluminum zoning in ZSM-5[J].The Journal of Physical Chemistry C,2010,114:6640-6645. |
[32] | RISTANOVI? Z,HOFMANN J P,DEKA U,et al.Intergrowth structure and aluminium zoning of a zeolite ZSM-5 crystal as resolved by synchrotron-based micro X-ray diffraction imaging[J].Angewandte Chemie International Edition,2013,52:13382-13386. |
[33] | DěDE?EK J,SOBALÍK Z,WICHTERLOVÁ B.Siting and distribution of framework aluminium atoms in silicon-rich zeolites and impact on catalysis[J].Catalysis Reviews,2012,54:135-223. |
[34] | BENCO L,DEMUTH T,HAFNER J,et al.Extraframework aluminum species in zeolites:ab initio molecular dynamics simulation of gmelinite[J].J.Catal.,2002,209:480-488. |
[35] | PEREA D E,ARSLAN I,LIU J,et al.Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography[J].Nat.Commun.,2015,6:7589-7592. |
[36] | ARAMBURO L R,DE SMIT E,ARSTAD B,et al.X-ray imaging of zeolite particles at the nanoscale:influence of steaming on the state of aluminum and the methanol-to-olefin reaction[J].Angewandte Chemie International Edition,2012,51:3616-3619. |
[37] | ONG L H,DÖMÖK M,OLINDO R,et al.Dealumination of HZSM-5 via steam-treatment[J].Microporous Mesoporous Mater.,2012,164:9-20. |
[38] | LUTZ W,RÜSCHER C H,GESING T M,et al.Investigations of the mechanism of dealumination of zeolite Y by steam:tuned mesopore formation versus the Si/Al ratio[J].Stud.Surf.Sci.Catal.,2004,154:1411-1417. |
[39] | DAPSENS P Y,MONDELLI C,RAMIREZ J P.Design of Lewis-acid centres in zeolitic matrices for the conversion of renewables[J].Chem.Soc.Rev.,2015,44:7025-7043. |
[40] | WANG Z,WANG L,JIANG Y,et al.Cooperativity of Brønsted and Lewis acid sites on zeolite for glycerol dehydration[J].ACS Catalysis,2014,4:1144-1147. |
[41] | LI S,ZHENG A,SU Y,et al.Brønsted/Lewis acid synergy in dealuminated HY zeolite:a combined solid-state NMR and theoretical calculation study[J].J.Am.Chem.Soc,2007,129:11161-11171. |
[42] | TO A T,JENTOFT R E,ALVAREZ W E,et al.Generation of synergistic sites by thermal treatment of HY zeolite.Evidence from the reaction of hexane isomers[J].J.Catal.,2014,317:11-21. |
[43] | PIDKO E A,ALMUTAIRI S M T,MEZARI B,et al.Chemical vapor deposition of trimethylaluminum on dealuminated faujasite zeolite[J].ACS Catalysis,2013,3:1504-1517. |
[44] | SCHALLMOSER S,IKUNO T,WAGENHOFER M F,et al.Impact of the local environment of Brønsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking[J].J.Catal.,2014,316:93-102. |
[45] | GOUNDER R,IGLESIA E.Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites[J].J.Am.Chem.Soc.,2009,131:1958-1971. |
[46] | GOUNDER R,IGLESIA E.The catalytic diversity of zeolites:confinement and solvation effects within voids of molecular dimensions[J].Chem.Commun.,2013,49:3491-3509. |
[47] | JONES A J,CARR R T,ZONES S I,et al.Acid strength and solvation in catalysis by MFI zeolites and effects of the identity,concentration and location of framework heteroatoms[J].J.Catal.,2014,312:58-68. |
[48] | MILINA M,MITCHELL S,CRIVELLI P,et al.Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts[J].Nat.Commun.,2014,5:3922-3932. |
[49] | MITCHELL S,PINAR A B,KENVIN J,et al.Structural analysis of hierarchically organized zeolites[J].Nat.Commun,2015,6:8633-8646. |
[50] | LOHSE U,MILDEBRATH M.Dealuminated Y-type molecular sieves.porosity of dealuminated molecular sieves[J].Z.Anorg.Allg.Chem.,1981,476:126-135. |
[51] | ZUKAL A,PATZELOVÁ V,LOHSE U.Secondary porous structure of dealuminated Y zeolites[J].Zeolites,1986,6:133-136. |
[52] | BEYERLEIN R A,FENG C C,HALL J B,et al.Effect of steaming on the defect structure and acid catalysis of protonated zeolites[J].Top.Catal.,1997,4:27-42. |
[53] | QIN Z,SHEN B,YU Z,et al.A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking[J].J.Catal.,2013,298:102-111. |
[54] | QIN Z,SHEN B,GAO X,et al.Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene[J].J.Catal.,2011,278:266-275. |
[55] | RAMÍREZ J P,VERBOEKEND D,BONILLA A,et al.Zeolite catalysts with tunable hierarchy factor by pore-growth moderators[J].Adv.Funct.Mater.,2009,19:3972-3979. |
[56] | KORTUNOV P,VASENKOV S,KÄRGER J,et al.The role of mesopores in intracrystalline transport in USY zeolite:PFG NMR diffusion study on various length scales[J].J.Am.Chem.Soc.,2005,127:13055-13059. |
[57] | BEYER H K.Dealumination Techniques for Zeolites[M]//Post-Synthesis Modification I.Springer Verlag,2002:203-255. |
[58] | HUNGER M,KARGER J,PFEIFER H,et al.Investigation of internal silanol groups as structural defects in ZSM-5-type zeolites[J].Journal of the Chemical Society,Faraday Transactions 1:Physical Chemistry in Condensed Phases,1987,83:3459-3468. |
[59] | KORNATOWSKI J,BAUR W H,PIEPER G,et al.Dealumination of large crystals of zeolite ZMS-5 by various methods[J].J.Chem.Soc.,Faraday Trans.,1992,88:1339-1343. |
[60] | LYNCH J,RAATZ F,DUFRESNE P.Characterization of the textural properties of dealuminated HY forms[J].Zeolites,1987,7:333-340. |
[61] | CHOIFENG C,HALL J B,HUGGINS B J,et al.Electron microscope investigation of mesopore formation and aluminum migration in USY catalysts[J].J.Catal.,1993,140:395-405. |
[62] | JANSSEN A H,KOSTER A J,DE JONG K P.Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y[J].Angew.Chem.,2001,113:1136-1138. |
[63] | JANSSEN A,KOSTER A,DE JONG K.On the shape of the mesopores in zeolite Y:a three-dimensional transmission electron microscopy study combined with texture analysis[J].J.Phys.Chem.B,2002,106:11905-11909. |
[64] | RAMIREZ J P.Zeolite nanosystems:imagination has no limits[J].Nat.Chem.,2012,4:250-251. |
[65] | VALTCHEV V,BALANZAT E,MAVRODINOVA V,et al.High energy ion irradiation-induced ordered macropores in zeolite crystals[J].J.Am.Chem.Soc.,2011,133:18950-18956. |
[66] | COOPER D A,HASTINGS T W,HERTZENBERG E P.Process for preparing zeolite Y with increased mesopore volume:US 5601798[P].1997-02-11. |
[67] | ZHANG L,CHEN K,CHEN B,et al.Factors that determine zeolite stability in hot liquid water[J].J.Am.Chem.Soc.,2015,137(36):11810-11819. |
[68] | SASAKI Y,SUZUKI T,TAKAMURA Y,et al.Structure analysis of the mesopore in dealuminated zeolite Y by high resolution TEM observation with slow scan CCD camera[J].J.Catal.,1998,178(1):94-100. |
[69] | BERNASCONI S,VAN BOKHOVEN J A,KRUMEICH F,et al.Formation of mesopores in zeolite beta by steaming:a secondary pore channel system in the (001) plane[J].Microporous Mesoporous Mater.,2003,66:21-26. |
[70] | KARWACKI L,DE WINTER D A M,ARAMBURO L R,et al.Architecture-dependent distribution of mesopores in steamed zeolite crystals as visualized by FIB-SEM tomography[J].Angewandte Chemie International Edition,2011,50:1294-1298. |
[71] | ARAMBURO L R,KARWACKI L,CUBILLAS P,et al.The porosity,acidity,and reactivity of dealuminated zeolite ZSM-5 at the single particle level:the influence of the zeolite architecture[J].Chemistry-A European Journal,2011,17:13773-13781. |
[72] | FODOR D,BELOQUI REDONDO A,KRUMEICH F,et al.Role of defects in pore formation in MFI zeolites[J].The Journal of Physical Chemistry C,2015,119:5447-5453. |
[73] | GUO D,SHEN B,QI G,et al.Unstable-Fe-site-induced formation of mesopores in microporous zeolite Y without using organic templates[J].Chem.Commun.,2014,50:2660-2663. |
[74] | GUO D,SHEN B,QIN Y,et al.USY zeolites with tunable mesoporosity designed by controlling framework Fe content and their catalytic cracking properties[J].Microporous Mesoporous Mater.,2015,211:192-199. |
[75] | SATO K,NISHIMURA Y,SHIMADA H.Preparation and activity evaluation of Y zeolites with or without mesoporosity[J].Catal.Lett.,1999,60:83-87. |
[76] | CHAUVIN B,MASSIANI P,DUTARTRE R,et al.Factors affecting the steam dealumination of zeolite omega[J].Zeolites,1990,10:174-182. |
[77] | DUTARTRE R,DE MÉNORVAL C L,DI RENZO F,et al.Mesopore formation during steam dealumination of zeolites:influence of initial aluminum content and crystal size[J].Microporous Materials,1996,6:311-320. |
[78] | LUTZ W,KURZHALS R,KRYUKOVA G,et al.Formation of mesopores in USY zeolites:a case revisited[J].Zeitschrift für Anorganische und Allgemeine Chemie,2010,8:1497-1505. |
[79] | BUURMANS I L C,WECKHUYSEN B M.Heterogeneities of individual catalyst particles in space and time as monitored by spectroscopy[J].Nat.Chem.,2012,4:873-886. |
[80] | ZECEVIC J,VANBUTSELE G,DE JONG K P,et al.Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J].Nature,2015,528:245-248. |
[1] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[2] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[3] | Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf) [J]. CIESC Journal, 2023, 74(9): 3968-3978. |
[4] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[5] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[6] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[7] | Rong WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Construction of 6FDA-based polyimide carbon molecular sieve membranes for gas separation and its application [J]. CIESC Journal, 2023, 74(4): 1433-1445. |
[8] | Houchuan YU, Teng REN, Ning ZHANG, Xiaobin JIANG, Yan DAI, Xiaopeng ZHANG, Junjiang BAO, Gaohong HE. Advances in two-dimensional graphene oxide membrane for ion selective transport [J]. CIESC Journal, 2023, 74(1): 303-312. |
[9] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[10] | Yuen BAI, Binrui ZHANG, Dongyang LIU, Liang ZHAO, Jinsen GAO, Chunming XU. Influence of synergistic effect of acid properties and pore structure of ZSM-5 zeolite on the catalytic cracking performance of pentene [J]. CIESC Journal, 2023, 74(1): 438-448. |
[11] | Liwei WANG, Juanjuan WANG, Yonghong WANG, Xinru ZHANG, Jinping LI. Gas transport properties of PVAm-based mixed matrix membranes by incorporating with Cu3(BTC)2-MMT-NH2 [J]. CIESC Journal, 2022, 73(7): 3068-3077. |
[12] | Hongchao LIU, Suhang CHEN, Xianli DUAN, Fan WU, Xiaofei XU, Xianyu SONG, Shuangliang ZHAO, Honglai LIU. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation [J]. CIESC Journal, 2022, 73(7): 2835-2843. |
[13] | Yanran ZHU, Liang GE, Xingya LI, Tongwen XU. Construction and application of three-phase ionic exchange membranes [J]. CIESC Journal, 2022, 73(6): 2397-2414. |
[14] | Pan HUANG, Cheng LIAN, Honglai LIU. Heat-mass transfer in real porous electrode based on simulated annealing algorithm [J]. CIESC Journal, 2022, 73(6): 2529-2542. |
[15] | Yan LI, Ahui TIAN, Yi ZHOU. Characteristics of scalar transport and chemical reaction in reactive dual jets [J]. CIESC Journal, 2022, 73(5): 1947-1963. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||