CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 217-223.doi: 10.11949/j.issn.0438-1157.20160466

Previous Articles     Next Articles

Two-way fluid solid interaction numerical analysis of steam generator heat transfer tube

ZHAO Yingjie, SUN Baozhi, SHI Jianxin, GAN Yiran, LIU Shanghua   

  1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China
  • Received:2016-04-11 Revised:2016-05-10 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51479040,51579048),the Natural Science Foundation of Heilongjiang Province (E201346,E201422) and the Postdoctoral Foundation Science of Heilongjiang Province (LBH-Q14036).


Taken the steam generator of Daya Bay nuclear power plant as the prototype, two-way fluid solid interaction of steam generator heat transfer tube together with the primary and secondary side was numerically simulated. The results show that the two-way fluid solid interaction method adopted here can accurately capture the displacement variation of steam generator heat transfer tube. The biggest displacement of heat transfer tube is located at the center section. The tube deviates to the third quadrant at equilibrium state. Displacement in X direction is not equal to that in Y direction because of the fluid elastic instability. The stress intensity along the height of heat transfer tube is symmetrically distributed with respect to center section (0.5 m). Stress concentration occurs adjacent to the fixed support due to the effect of fixed constraint, so stress near the fixed support is biggest. The distribution regularities of stress intensity along the circumferential direction at different height are similar. Affected by the displacement of heat transfer tube, stress intensity is symmetrically distributed with respect to the line 20° and 200° connected. Stress extremum occurs adjacent to the angle of 20° and 200°. Two-way fluid solid interaction method of steam generator heat transfer tube can provide theoretical reference for the safety operation of steam generator.

Key words: steam generator, numerical simulation, fluid solid interaction, instability, stress intensity, safety

CLC Number: 

  • TL331
[1] 孙宝芝, 郑陆松, 韩文静, 等. 基于流固耦合的蒸汽发生器换热管结构应力分析[J]. 化工学报, 2014, 65(S1):364-370. SUN B Z, ZHENG L S, HAN W J, et al. Analysis on structural stress of tube in steam generator based on fluid-structure interaction[J]. CIESC Journal, 2014, 65(S1):364-370.
[2] 臧希年, 申世飞. 核电厂系统及设备[M]. 北京:清华大学出版社, 2003:65-84. ZANG X N, SHEN S F. Nuclear Power Plant Systems and Equipment[M]. Beijing:Tsinghua University Press, 2003:65-84.
[3] KUEHLERT K, WEBB S, SCHOWALTER D, et al. Simulation of the fluid-structure-interaction of steam generator tubes and bluff bodies[J]. Nuclear Engineering and Design, 2008, 238(8):2048-2054.
[4] ZHAO W S, XUE F, SHU G G, et al. Analysis of flow-induced vibration of steam generator tubes subjected to cross flow[J]. Nuclear Engineering and Design, 2014, 275(8):375-381.
[5] SUN B Z, ZHENG L S, YANG L B, et al. A coupled stress analysis of the steam generator tube considering the influence of the fluid flow and heat transfer in the primary and secondary sides[J]. Applied Thermal Engineering, 2015, 87(3):803-815.
[6] 郑陆松, 孙宝芝, 杨元龙, 等. 基于流热固耦合的核电蒸汽发生器传热管热应力数值模拟[J]. 原子能科学技术, 2014, 48(1):74-80. ZHENU L S, SUN B Z, YANG Y L, et al. Numerical simulation on thermal stress of tube in steam generator of nuclear power plant based on fluid thermal-structure interaction[J]. Atomic Energy Science and Technology, 2014, 48(1):74-80.
[7] 戚振, 陆斌, 刘亮亮. 基于流固耦合的管壳式换热器热力学计算研究[J].山东化工,2015,44(17):160-162. QI Z, LU B, LIU L L. Heat stress distribution research on fluid on the tube shell heat exchanger based on fluid-solid coupling[J]. Shandong Chemical Industry, 2015, 44(17):160-162.
[8] 李以农, 王雷, 柳承峰, 等. 汽油机歧管式催化转化器流固耦合热应力分析[J].重庆大学学报, 2012, 35(4):1-6. LI Y N, WANG L, LIU C F, et al. F1uid-structure thermal simulation of gasoline engine manifold catalytic converter[J]. Journal of Chongqing University, 2012, 35(4):1-6.
[9] 林好利, 陈洪涛, 赵海峰, 等. 柴油机排气歧管流固耦合分析[J].拖拉机与农用运输车, 2014, 41(1):59-62. LIN H L, CHEN H T, ZHAO H F, et al. Fluid-solid coupling analysis of diesel engine exhaust manifold[J]. Tractor & Farm Transporter, 2014, 41(1):59-62.
[10] 朱晴, 袁兆成, 马家义, 等. 基于流固耦合的某增压汽油机排气歧管热分析[J].汽车工程, 2013, 35(12):1134-1138. ZHU Q, YUAN Z C, MA J Y, et al. Thermal analysis for the exhaust manifold of a supercharged gasoline engine based on fluid-solid coupling[J]. Automotive Engineering, 2013, 35(12):1134-1138.
[11] 成诚, 程筱胜, 戴宁. 风力机叶片单向流固耦合析[J].机械设计与制造工程, 2014, 43(11):28-31. CHENG C, CHENG X S, DAI N. The coupling analysis on fluid-solid interaction of wind turbine blade[J]. Machine Design and Manufacturing Engineering, 2014, 43(11):28-31.
[12] 查海滨, 姜营, 王君, 等. 涡旋压缩机单向流固耦合方法与涡旋齿变形分析[J]. 流体机械, 2015, 43(12):22-27. ZHA H B, JIANG Y, WANG J,et al. One-way fluid-structure interaction method of scroll compressor and analysis on the deformation of the wrap[J]. Fluid Machinery, 2015, 43(12):22-27.
[13] 潘旭, 李成, 铁瑛, 等. 轴流泵叶片流固耦合强度分析[J]. 水力发电学报, 2012, 31(4):221-226. PAN X, LI C, TIE Y, et al. Strength analysis of fluid-solid coupling of axial flow pump blades[J]. Journal of Hydroelectric Engineering, 2012, 31(4):221-226.
[14] 刘涛, 李凤婷, 景雪辉. T型管接头的流固耦合及热应力分析[J]. 机床与液压, 2010, 38(3):127-128. LIU T, LI F T, JING X H. The T-tube joint fluid-solid coupling and thermal stress analysis[J]. Machine Tool & Hydraulics, 2010, 38(3):127-128.
[15] 冯志鹏, 臧峰刚, 张毅雄. 传热管流体诱导振动特性的数值研究[J]. 原子能科学技术, 2014, 48(10):1807-1813. FEND Z P, ZANG F G, ZHANG Y X. Numerical study on flow induced vibration characteristics of heat transfer tube[J]. Atomic Energy Science and Technology, 2014, 48(10):1807-1813.
[16] 庞天照, 郭伟, 盛元平, 等. 基于流固耦合的U型管流致振动数值分析[J]. 中国舰船研究, 2011, 6(4):29-33. PANG T Z, GUO W, SHENG Y P,et al. Numerical simulation of fluid-induced vibration in U-tube based on FSI[J]. Chinese Journal of Ship Research, 2011, 6(4):29-33.
[17] 冯志鹏, 张毅雄, 臧峰刚. 两串列管与两并列管的流致振动特性研究[J].核动力工程, 2014, 35(1):87-91. FENG Z P, ZHANG Y X, ZANG F G. Study on flow induced vibration characteristics of two inline tubes and two parallel tubes[J]. Nuclear Power Engineering, 2014, 35(1):87-91.
[18] 冯志鹏, 张毅雄, 减峰刚, 等. 三维弹性管的涡致振动特性分析[J]. 应用数学和力学, 2013, 34(9):976-985. FENG Z P, ZHANG Y X, ZANG F G, et al. Analysis of vortex-induced vibration characteristics for a three dimensional flexible tube[J]. Applied Mathematics and Mechanics, 2013, 34(9):976-985.
[19] 杨元龙, 孙宝芝, 王林川, 等. 不同运行工况下蒸汽发生器热工水力稳态特性数值研究[J]. 原子能科学技术, 2013, 47(5):761-767. YANG Y L, SUN B Z, WANG L C, et al. Numerical investigation on thermal-hydraulic steady-state characteristics of steam generator in different operating conditions[J]. Atomic Energy Science and Technology, 2013, 47(5):761-767.
[20] LIU Z G, LIU Y, LIU J. Numerical simulation of the fluid-structure interaction for two simple fuel assemblies[J]. Nuclear Engineering and Design, 2013, 258(2):1-12.
[1] Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927.
[2] Jian ZHAO, Xingchao ZHOU, Dan XIA, Hang DONG. Study on influence of mechanical stirring on heat transfer characteristics during jet heating of crude oil storage tank [J]. CIESC Journal, 2023, 74(5): 1982-1999.
[3] Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012.
[4] Junhua DING, Shurong YU, Shipeng WANG, Xianzhi HONG, Xin BAO, Xuexing DING. Flow simulation and sealing performance test of ultra-high speed dry gas seal under multiple effects [J]. CIESC Journal, 2023, 74(5): 2088-2099.
[5] Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973.
[6] Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650.
[7] Airan ZHOU, Ping LU, Jianhui XIA, Dongqin LI, Jie GUO, Ming DU, Lichun DONG. Scarring analysis and numerical simulation of TiCl4 oxidation reactor in chloride process of titanium dioxide [J]. CIESC Journal, 2023, 74(4): 1499-1508.
[8] Qingchao LIU, Hui JIA, Yifei XU, Na LU, Yanmei YIN, Jie WANG. Study on shear-force distribution in biological aerated filter based on FBG sensing technology [J]. CIESC Journal, 2023, 74(4): 1755-1763.
[9] Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538.
[10] Zhongliang XIAO, Bilu YIN, Liubin SONG, Yinjie KUANG, Tingting ZHAO, Cheng LIU, Rongyao YUAN. Research progress of waste lithium-ion battery recycling process and its safety risk analysis [J]. CIESC Journal, 2023, 74(4): 1446-1456.
[11] Xiaoxuan WANG, Xiaohong HU, Yunan LU, Shiyong WANG, Fengxian FAN. Numerical simulation of flow characteristics in a rotating membrane filter [J]. CIESC Journal, 2023, 74(4): 1489-1498.
[12] Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144.
[13] Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312.
[14] Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689.
[15] Peng QIU, Yang HAN, Jianliang XU, Fuchen WANG, Zhenghua DAI. Study of EDC parameters for predicting entrained flow coal gasification [J]. CIESC Journal, 2023, 74(1): 428-437.
Full text



No Suggested Reading articles found!