CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 326-333.doi: 10.11949/j.issn.0438-1157.20160528

Previous Articles     Next Articles

Dynamic characteristics simulation of steam supplying system in different steam charging ways

MA Biao1, LI Yanjun1, GUO Jiamin2, ZHANG Guolei1, SONG Fuyuan1, LI Jian1, ZENG Shuai1, ZHANG Xiaoyu1   

  1. 1 College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China;
    2 703 Research Institute of China Shipbuilding Industry Corporation, Harbin 150078, Heilongjiang, China
  • Received:2016-04-21 Revised:2016-05-07 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51479040,51409070) and the Natural Science Foundation of Heilongjiang Province (E201422).

Abstract:

With steam supplying system as the object of the research, the mathematical models are based on the lumped parameter theory. The study has been carried out in two different charging ways. One of them is charging valve in Auto-Control and the other is bypass valve in Auto-Control. The simulation results show as follows.The time to complete three times charging and discharging is 76.3 seconds when bypass valve is in Auto-Control. The time to complete three times charging and discharging is 62.9 seconds when charging valve is in Auto-Control. 4.5 seconds have been saved for each charging when charging valve is in Auto-Control. The key parameters maintain relatively stable during the charging period in both charging ways. The main parameters have relatively larger fluctuations when the two valves are being switched on. But the main parameters are less than 0.2 MPa. In the same charging way,the fluctuation of drum pressure is less than the fluctuation of superheated steam pressure, and the fluctuation of superheated steam pressure is less than the fluctuation of steam supplying pipe pressure.

Key words: steam supplying system, mathematical models, charging ways, dynamic simulation, numerical simulation, numerical analysis

CLC Number: 

  • TQ028.8
[1] 于文轩. 船用增压锅炉动力系统的仿真研究[D]. 重庆:重庆大学, 2008. YU W X. Simulation research on the dynamic system of marine turbocharged boiler[D]. Chongqing:Chongqing University, 2008.
[2] 吕建伟, 易惠, 刘中华. 舰船设计方案评估指标体系研究[J]. 船舶工程, 2005, 27(4):53-57. LÜ J W, YI H, LIU Z H. Research on index system for evaluating warship design[J]. Ship Engineering, 2005, 27(4):53-57.
[3] 张志华. 船舶动力装置概论[M]. 哈尔滨:哈尔滨工程大学出版社, 2001:7-8. ZHANG Z H. Introduction to Ship Power Equipment[M]. Harbin:Harbin Engineering University Press, 2001:7-8.
[4] 程刚. 舰用热力系统的模块化建模与仿真研究[D]. 武汉:华中科技大学, 1999. CHENG G. Modular modeling and simulation of warship thermal system[D]. Wuhan:Huazhong University of Science and Technology, 1999.
[5] STEVANOVIC V, MASLOVARIC B, PRICA S. Dynamics of steam accumulation[J]. Applied Thermal Engineering, 2012, 37:73-79.
[6] STEINMANN W D, MARKUS E. Buffer storage for direct steam generation[J]. Solar Energy, 2006, 80:1277-1282.
[7] BALDINI A, MANFRIDA G, TEMPESTI D. Model of a solar collector/storage system for industrial thermal applications[J]. International Journal of the Thermo-dynamics,2009, 12(2):83-88.
[8] ADAM E J. Dynamic simulation of large boilers with natural recirculation[J]. Computers and Chemical Engineering, 1999, 23:1031-1040.
[9] BHHAMBARE K S. Modeling of a coal-fired natural circulation boiler[J]. Journal of Energy Resource Techno-logy, 2007, 129(6):159-167.
[10] ASTROM K J, BELL R D. Drum-boiler dynamics[J]. Automatica, 2000,36(99):363-378.
[11] 李彦军. 增压锅炉热力性能参数变化规律及动态性能研究[D]. 哈尔滨:哈尔滨工程大学,2006 LI Y J. Study of the thermal performance parameters and dynamic characters in the supercharged boiler[D]. Harbin:Harbin Engineering University,2006.
[12] 薛敏. 增压锅炉热力性能校核计算及动态性能研究[D]. 哈尔滨:哈尔滨工程大学, 2007. XUE M. Calculation and dynamic performance study of the thermal performance of a turbocharged boiler[D]. Harbin:Harbin Engineering University, 2007.
[13] 于海涛, 李彦军, 张国磊. 不同充放汽条件下的锅炉-蓄热器系统动态特性[J].化工学报,2014,65(5):130-137. YU H T, LI Y J, ZHANG G L. Dynamic characteristics of boiler-accumulator under condition of different steam charging and discharging[J]. CIESC Journal, 2014, 65(5):130-137.
[14] BALDINI A,MANFRIDA G,TEMPESTI D. Model of a solar collector/storage system for industrial thermal applications[J]. International Journal of the Thermody-namics, 2009, 12(2):83-88.
[15] 胡继敏, 金家善, 严志腾. 储汽筒充汽系统的热力过程建模与仿真[J]. 上海交通大学学报, 2012, 46(4):545-549. HU J M,JIN J S,YAN Z T. Modeling and simulation for thermodynamic process of steam accumulator system[J]. Journal of Shanghai Jiaotong University, 2012, 46(4):545-549.
[16] 胡继敏,金家善,严志腾.汽源参数变化对储汽筒充汽系统变工况性能的影响[J].海军工程大学学报,2012,24(5):102-107. HU J M,JIN J S,YAN Z T. Influence of steam supply parameters variation on performances of steam accumulator system[J]. Journal of Naval University of Engineering, 2012, 24(5):102-107.
[17] 王茂森, 董如春, 李正. 蒸汽蓄热器的蓄热能力计算模型及运行分析[J]. 冶金自动化, 2007, (S2):374-376. WANG M S, DONG R C, LI Z. Calculation model and operation analysis of the heat storage capacity of steam heat accumulator[J]. Metallurgical Automation, 2007, (S2):374-376.
[18] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京:高等教育出版社, 2006:247. YANG S M,TAO W Q. Heat Transfer[M]. 4th ed. Beijing:Higher Education Press, 2006:247
[19] 陆陪文.调节阀实用技术[M]. 北京:机械工业出版社,2006. LU P W. Regulating Valve Practical Technology[M]. Beijing:Machinery Industry Press, 2006.
[1] Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927.
[2] Jian ZHAO, Xingchao ZHOU, Dan XIA, Hang DONG. Study on influence of mechanical stirring on heat transfer characteristics during jet heating of crude oil storage tank [J]. CIESC Journal, 2023, 74(5): 1982-1999.
[3] Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012.
[4] Junhua DING, Shurong YU, Shipeng WANG, Xianzhi HONG, Xin BAO, Xuexing DING. Flow simulation and sealing performance test of ultra-high speed dry gas seal under multiple effects [J]. CIESC Journal, 2023, 74(5): 2088-2099.
[5] Zhengtao LI, Zhijie YUAN, Gaohong HE, Xiaobin JIANG. Study of the mechanism of internal circulation regulation during evaporation of NaCl droplets on hydrophobic interface [J]. CIESC Journal, 2023, 74(5): 1904-1913.
[6] Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973.
[7] Airan ZHOU, Ping LU, Jianhui XIA, Dongqin LI, Jie GUO, Ming DU, Lichun DONG. Scarring analysis and numerical simulation of TiCl4 oxidation reactor in chloride process of titanium dioxide [J]. CIESC Journal, 2023, 74(4): 1499-1508.
[8] Qingchao LIU, Hui JIA, Yifei XU, Na LU, Yanmei YIN, Jie WANG. Study on shear-force distribution in biological aerated filter based on FBG sensing technology [J]. CIESC Journal, 2023, 74(4): 1755-1763.
[9] Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538.
[10] Xiaoxuan WANG, Xiaohong HU, Yunan LU, Shiyong WANG, Fengxian FAN. Numerical simulation of flow characteristics in a rotating membrane filter [J]. CIESC Journal, 2023, 74(4): 1489-1498.
[11] Xinya LI, Lei XING, Minghu JIANG, Lixin ZHAO. Research on performance of downhole oil-water separation hydrocyclone enhanced by inverted cone gas injection [J]. CIESC Journal, 2023, 74(3): 1134-1144.
[12] Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312.
[13] Peng QIU, Yang HAN, Jianliang XU, Fuchen WANG, Zhenghua DAI. Study of EDC parameters for predicting entrained flow coal gasification [J]. CIESC Journal, 2023, 74(1): 428-437.
[14] Shanshan LIAO, Shaogang ZHANG, Junjun TAO, Jiahao LIU, Jinhui WANG. Numerical simulation analysis of vertical jet fire impinging on the pipeline [J]. CIESC Journal, 2022, 73(9): 4226-4234.
[15] Yongqian WANG, Ping WANG, Kang CHENG, Chenlin MAO, Wenfeng LIU, Zhicheng YIN, Antonio Ferrante. Stability and NO production of lean premixed ammonia/methane turbulent swirling flame [J]. CIESC Journal, 2022, 73(9): 4087-4094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!