CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 318-325.doi: 10.11949/j.issn.0438-1157.20160546

Previous Articles     Next Articles

Characteristics of steam dynamic system in different operating environment

LI Jian1, ZHANG Guolei1, SHI Zhijun2, YANG Longbin1, MA Biao1, ZENG Shuai1, LI Zihao1   

  1. 1 College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, Heilongjiang, China;
    2 703 Research Institute of China Shipbuilding Industry Corporation, Harbin 150078, Heilongjiang, China
  • Received:2016-04-26 Revised:2016-05-03 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51479040,51409070)and the Natural Science Foundation of Heilongjiang Province (E201422).


Environmental temperature and pressure, which act as the operating condition of the steam power system, play an important role in the safety and economy of the whole system. The simulation model of a steam power system was established to analyze and discuss the characteristics of the system under different ambient temperature and pressure. The results show that auxiliary engine power, steam flow and fuel flow increase with the raise of environmental temperature. Also, auxiliary engine power, steam flow and fuel flow increase with the decline of environmental pressure.Moreover, a lower load of dynamic system leads to a greater proportion of auxiliary engine power.

Key words: steam power, environment condition, response pattern, process systems, model, dynamic simulation

CLC Number: 

  • TQ028.8
[1] 张志华. 船舶动力装置概论[M]. 哈尔滨:哈尔滨工程大学出版社, 2001:7-8. ZHANG Z H. Introduction to Ship Power Equipment[M]. Harbin:Harbin Engineering University Press, 2001:7-8.
[2] 韩静.舰用增压锅炉热平衡及动态仿真研究[D].哈尔滨:哈尔滨工程大学,2006. HAN J.Heat balance analysis and dynamic simulation in marine supercharged boiler[D].Harbin:Harbin Eng-ineering Uninersity,2006.
[3] 刘云生,陈华清,张宁,等.舰船动力系统综合评估指标体系[J].船舶工程,2008,30(4):32-35. LIU Y S,CHEN H Q,ZHANG N,et al. An index system for the comprehensive evaluation of warship propulsion system[J].Ship Engineering,2008,30(4):32-35.
[4] 于文轩. 船用增压锅炉动力系统的仿真研究[D]. 重庆:重庆大学, 2008. YU W X. Simulation research on the dynamic system of marine turbocharged boiler[D]. Chongqing:Chongqing University, 2008.
[5] AKIBA M.Thermodynamic analysis of new combination of supercharged boiler cycle and heat recovery cycle for power generation[J].Journal of Engineering for Gas Turbines and Power,1996,118:453-460.
[6] 薛敏.增压锅炉热力性能校核计算机动态性能研究[D].哈尔滨:哈尔滨工程大学,2007. XUE M.Calculation and dynamic performance study of the thermal performance of a turbocharged boiler[D].Harbin:Harbin Engineering Uninersity,2007.
[7] 沈志刚,邹积国,姜任秋,等.增压锅炉机组重要热工参数的选择[J].热能动力工程,2003,18(103):27-29. SHEN Z G,ZOU J G,JIANG R Q,et al.The selection of major thermodynamic parameters for a supercharged boiler unit[J].Journal of Engineering for Thermal Energy and Power,2003,18(103):27-29.
[8] 李可顺,孙培廷,常东晓.环境条件对船舶柴油机涡轮增压器性能的影响[J].世界海运,2004,27(6):48-49. LI K S,SUN P T,CHANG D X.Influence of ambient conditions to the performance of marine diesel turbocharger[J].World Shipping,2004,27(6):48-49.
[9] 王剑平,周国义,孙丰瑞.大气温度对涡轮增压机组性能影响的分析[J].燃气轮机技术,2005,18(1):35-37. WANG J P,ZHOU G Y,SUN F R.Influence analyses of atmospheric temperature on performance of turbo-charger set[J].Gas Turbine Technology,2005,18(1):35-37.
[10] 赵进刚.舰用蒸汽动力装置特有的环境适应性[J].船舶工程,2010,32(5):19-22. ZHAO J G.Particular environmental suitability of marine steam power plant[J].Ship Engineering,2010,32(5):19-22.
[11] 罗向龙,陈颖,华贲.参数不确定性条件下蒸汽动力系统的运行优化[J].石油学报(石油加工),2009,25(2):233-240. LUO X L,CHEN Y,HUA B.Operational planning optimization of utility system under parameters uncertainty[J]. Acta Petrolei Sinica(Petroleum Processing Section),2009,25(2):233-240.
[12] 李晖,孙力,贺高红.考虑不确定汽电需求的蒸汽动力系统优化设计[J].化工学报,2013,64(1):318-325. LI H,SUN L,HE G H.Design and optimization of steam power system with uncertain steam and power demands[J].CIESC Journal,2013,64(1):318-325.
[13] 刘畅,孙力,贺高红,等.基于不确定蒸汽需求和设备故障的锅炉系统随机规划设计[J].化工学报,2014,65(9):3512-3517. LIU C,SUN L,HE G H,et al.Boiler system design based on stochastic programming under uncertain steam demand and equipment failure[J].CIESC Journal,2014,65(9):3512-3517.
[14] WOJNAR W, PRONOBIS M.The model of flow and temperature dostribution in the superheater of a power boiler[J].Rynek Energii,2008,6:39-46.
[15] 姜洋.基于流体网络的船舶蒸汽动力系统动态性能研究[D].哈尔滨:哈尔滨工程大学,2013. JIANG Y. Research on dynamic performance of marine steam power system based on fluid network[D].Harbin:Harbin Engineering Uninersity,2013.
[16] 李彦军.增压锅炉热力性能参数变化规律及动态性能研究[D]. 哈尔滨:哈尔滨工程大学,2006 LI Y J. Study of the thermal performance parameters and dynamic characters in the supercharged boiler[D]. Harbin:Harbin Engineering University,2006.
[17] COHEN H,ROGERS G F C,Saravanamuttoo H I H. Gas Turbine Theory[M].London:Longman Group Limited,1996:338-341.
[18] 姚寿广. 船舶热力系统分析[M]. 北京:科学出版社, 2003:8-10. YAO S G.Analysis of Ship Thermodynamic System[M].Beijing:Science Press,2003:8-10.
[19] 王成.基于GSE的增压锅炉系统动态性能仿真研究[D].哈尔滨:哈尔滨工程大学,2012. WANG C.Simulation research on dynamic performance of supercharged boiler system based on GSE[D].Harbin:Harbin Engineering Uninersity,2012.
[20] 史智俊,张国磊,李彦军,等.回汽保护控制下舰用蒸汽动力系统响应规律[J].化工学报,2015,66(S2):287-293. SHI Z J,ZHANG G L,LI Y J,et al.Response pattern of marine steam power system under back-steam protection[J].CIESC Journal,2015,66(S2):287-293.
[1] Zihan YUAN, Shuyan WANG, Baoli SHAO, Lei XIE, Xi CHEN, Yimei MA. Investigation on flow characteristics of wet particles with power-law liquid-solid drag models in fluidized bed [J]. CIESC Journal, 2023, 74(5): 2000-2012.
[2] Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981.
[3] Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr() in water [J]. CIESC Journal, 2023, 74(5): 2197-2206.
[4] Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650.
[5] Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734.
[6] Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754.
[7] Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227.
[8] Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215.
[9] Xuanjun WU, Chao WANG, Zijian CAO, Weiquan CAI. Deep learning model of fixed bed adsorption breakthrough curve hybrid-driven by data and physical information [J]. CIESC Journal, 2023, 74(3): 1145-1160.
[10] Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081.
[11] Jinlin MENG, Yu WANG, Qunfeng ZHANG, Guanghua YE, Xinggui ZHOU. Pore network model of low-temperature nitrogen adsorption-desorption in mesoporous materials [J]. CIESC Journal, 2023, 74(2): 893-903.
[12] Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652.
[13] Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689.
[14] Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817.
[15] Jingbo GAO, Qiang SUN, Qing LI, Yiwei WANG, Xuqiang GUO. Hydrate equilibrium model of hydrogen-containing gas considering hydrates structure transformation [J]. CIESC Journal, 2023, 74(2): 666-673.
Full text



No Suggested Reading articles found!