CIESC Journal ›› 2016, Vol. 67 ›› Issue (S1): 1-6.doi: 10.11949/j.issn.0438-1157.20160623

Previous Articles     Next Articles

Thermal management using phase change materials for proton exchange membrane fuel cells

CHEN Sitong1,2, LI Weiwei2, WANG Xueke1,2, WANG Shubo2, XIE Xiaofeng2, ZHU Tong1   

  1. 1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, Liaoning, China;
    2 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
  • Received:2016-05-09 Revised:2016-05-19 Online:2016-08-31 Published:2016-08-31
  • Supported by:

    supported by the National Natural Science Foundation of China (51573083).


Proton exchange membrane fuel cell (PEMFC) has become the preferential choice of a new generation of energy and power for its high energy conversion rate and environment-friendly. Through analysis about the important influence of temperature on the operating performance of PEMFC, the importance of effective thermal management for fuel cell is proved. The current research status of PEMFC thermal management are induced and summaried according to the classification of active cooling and passive cooling. The material selection and the method of heat transfer enhancement is introduced in detail for the fuel cell thermal management system using phase change materials. And this paper forecasts the research direction of this field in the future.

Key words: fuel cells, thermal management, phase change, passive cooling, heat transfer

CLC Number: 

  • TQ028.8
[1] 黄倬,屠海令, 张冀强, 等. 质子交换膜燃料电池的研究开发与应用[M].北京:冶金工业出版社, 2000:5-29. HUANG Z, TU H L, ZHANG J Q, et al. Development and Application of Proton Exchange Membrane Fuel Cells[M]. Beijing:Metallurgical Industry Press, 2000:5-29.
[2] 衣宝廉. 燃料电池——原理·技术·应用[M]. 北京:化学工业出版社, 2003:230-240. YI B L. Fuel Cell-Principle·Technology·Application[M]. Beijing:Chemical Industry Press, 2003:230-240.
[3] 叶锋, 曲江兰, 仲俊瑜, 等. 相变储热材料研究进展[J]. 过程工程学报, 2010, 10(6):1231-1241. YE F, QU J L, ZHONG J Y, et al. Research progress of phase change thermal storage materials[J]. Chinese Journal of Process Engineering, 2010, 10(6):1231-1241.
[4] 田玉冬, 朱新坚, 曹广益. 质子交换膜燃料电池的温度实验分析[J]. 电池, 2005, 35(3):138-142. TIAN Y D, ZHU X J, CAO G Y. An analysis of the temperature test of proton exchange membrane fuel cell[J]. Battery, 2005, 35(3):138-142.
[5] COPPO M, SIEGEL N P, Spakovsky M R V. On the influence of temperature on PEM fuel cell operation[J]. Journal of Power Sources, 2006, 159(1):560-569.
[6] SCHNEIDER I A, SCHERER G G. Handbook of Fuel Cells[M]. New York:John Wiley & Sons, 2009:2.
[7] FENG K, HOU L, TANG B B, et al. Does thermal treatment merely make a H2O-saturated Nafion membrane lose its absorbed water at high temperature[J]. Physical Chemistry Chemical Physics, 2015, 17(14):9106-9115.
[8] KIM S, MENCH M M. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling:micro-structure effects[J]. Journal of Power Sources, 2007, 174(1):206-220.
[9] CHO E, KO J J, HA H Y, et al. Characteristics of the PEMFC repetitively brought to temperature below 0℃[J]. Journal of the Electrochemical Society, 2003, 150(12):A1667-A1670.
[10] YAN Q, TOGHIANI H, LEE Y W, et al. Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components[J]. Journal of Power Sources, 2006, 160(2):1242-1250.
[11] MUKUNDAN R, KIM Y S, GARZON F H, et al. Freeze/thaw effects in PEM fuel cells[J]. ECS Transactions, 2006, 1(8):403-413.
[12] ROWE A, LI X G. Mathematical modeling of proton exchange membrane fuel cell[J]. Journal of Power Sources, 2001, 102(1/2):82-96.
[13] AFSHARI E, JAZAYERI S A. Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance[J]. Energy Conversion and Management, 2010, 51(4):655-662.
[14] DUMERCY L, GLISES R, LOUAHLIA G H, et al. Thermal management of a PEMFC stack by 3D nodal modeling[J]. Journal of Power Sources, 2006, 156(1):78-84.
[15] LASBET Y, AUVITY B, CASTELAIN C, et al. A chaotic heat-exchanger for PEMFC cooling applications[J]. Journal of Power Sources, 2006, 156(1):114-118.
[16] SENN S M, POULIKAKOS D. Laminar mixing, heat transfer and pressure drop in tree-like microchannel nets and their application for thermal management in polymer electrolyte fuel cells[J]. Journal of Power Sources, 2004, 130(1/2):178-191.
[17] CASTELAIN C, LASBET Y, AUVITY B, et al. Experi-mental study of the thermal performance of chaotic geometries for their use in PEM fuel cells[J]. International Journal of Thermal Sciences, 2016, 101(1):181-192.
[18] LARMINIE J. Fuel Cell Systems Explained[M]. DICKS A. 2nd ed. Chichester:John Wiley &Sons, 2003:51.
[19] SCHMIDT H, BUCHNER P, DATZ A, et al. Low-cost air-cooled PEFC stacks[J]. Journal of Power Sources, 2002, 105(2):243-249.
[20] TAKASHIBA T, YAGAWA S. Development of fuel cell coolant[J]. Honda R&D Technical Review, 2009, 21(1):58-62.
[21] INCROPERA F, DEWITT P, BERGMAN T L, et al. Introduction to Heat Transfer[M]. 5th ed. New York:John Wiley & Sons, 2006:126.
[22] WEN C Y, LIN Y S, LU C H. Thermal management of a proton exchange membrane fuel cell stack with pyrolytic graphite sheets and fans combined[J]. International Journal of Hydrogen Energy, 2011, 36(10):6082-6089.
[23] WEN C Y, HUANG G W. Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell[J]. Journal of Power Sources, 2008, 178(1):132-140.
[24] FAGHRI A, GUO Z. Integration of heat pipe into fuel cell technology[J]. Heat Transfer Engineering, 2008, 29(3):232-238.
[25] FAGHRI A. Micro heat pipe embedded bipolar plate for fuel cell stacks:US0026015[P]. 2005-03-02.
[26] FAGHRI A. Integrated bipolar plate heat pipe for fuel cell stacks:US0037253[P]. 2005-02-17.
[27] 雷东强, 王秀春, 朱威力, 等. 热管技术在变压器中的应用研究[J]. 变压器, 2007, 44(1):37-40. LEI D Q, WANG X C, ZHU W L, et al. Research on application of heat pipe technology to transformer[J]. Transformer, 2007, 44(1):37-40.
[28] REISER C. Ion exchange membrane fuel cell power plant with water management pressure differentials:US5700595[P]. 1997-02-10.
[29] GOEBEL S G. Evaporative cooled fuel cell:US6960404[P]. 2005-11-01.
[30] BRAMBILLA M, MAZZUCCHELLI G. Fuel cell with cooling system based on direct injection of liquid water:US6835477[P]. 2004-12-28.
[31] ZHANG G S, SATISH G K. A critical review of cooling techniques in proton exchange membrane fuel cell stacks[J]. International Journal of Hydrogen Energy, 2012, 37(3):2412-2429.
[32] FARID M M, KHUDHAIR A M, RAZACK S A, et al. A review on phase change energy storage:materials and applications[J]. Energy Convers Manage, 2004, 45(9/10):1597-1615.
[33] 李金辉, 刘晓兰, 张荣军, 等. 新型相变储能材料研究进展[J]. 化工新型材料, 2006, 34(8):18-21. LI J H, LIU X L, ZHANG R J, et al. Research and development of new phase change materials for heat energy storage[J]. New Chemical Materials, 2006, 34(8):18-21.
[34] DUTIL Y, ROUSSE D R, SALAH N B, et al. A review on phase-change materials:mathematical modeling and simu-lations[J]. Renewable & Sustainable Energy Reviews, 2011, 15(1):112-130.
[35] PY X, OLIVES R, MAURAN S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material[J]. International Journal of Heat & Mass Transfer, 2001, 44(14):2727-2737.
[36] SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2):318-345.
[37] XIA L, ZHANG P, WANG R Z. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material[J]. Carbon, 2010, 48(9):2538-2548.
[38] MILLS A, FARID M, SELMAN J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006, 26(14):1652-1661.
[39] ELGAFY A, LAFDI K. Effect of carbon nanofiber additives on thermal behavior of phase change materials[J]. Carbon, 2005, 43(15):3067-3074.
[40] SABBAH R, AL-HALLAJ S. Natural convection with micro-encapsulated phase change material[J]. Journal of Heat Transfer, 2012, 134(8):243-250.
[41] KARAIPEKLI A,SARI A, KAYGUSUZ K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy, 2007, 32(13):2201-2210.
[42] AL-HALLAJ S, SELMAN J R. A novel thermal management system for electric vehicle batteries using phase-change material[J]. Journal of the Electrochemical Society, 2000, 147(9):3231-3236.
[43] KⅡZILEL R, LATEEF A, SABBAH R, et al. Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature[J]. Journal of Power Sources, 2008, 183(1):370-375.
[44] SAHAN N, FOIS M, PAKSOY H. Improving thermal conductivity phase change materials:a study of paraffin nanomagnetite composites[J]. Solar Energy Materials and Solar Cells, 2015, 137(15):61-67.
[45] JAVANI N, DINCER I, NATERER G F. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J]. International Journal of Heat and Mass Transfer, 2014, 72(1):690-703.
[46] RAO Z H, WANG S F. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery[J]. Energy Conversion and Management, 2011, 52(12):3408-3414.
[47] ALRASHDAN A, MAYYAS, AL-HALLAJ S. Thermo-mechanical behaviors of the expanded graphite phase change material matrix used for thermal management of Li-ion battery packs[J]. Journal of Materials Processing Technology, 2010, 210(1):174-179.
[48] BREIT J S, BELLEVUE W A. Utilizing phase change material, heat pipes and fuel for aircraft applications:US0189594[P]. 2013-06-25.
[49] NISHⅡ M, ARAI H, SAKAI T, et al. Coolant and cooling system:US7501196[P]. 2009-03-10.
[50] SASMITO A P, SHAMIM T, MUJUMDAR A S. Passive thermal management for PEM fuel cell stack under cold weather condition using phase change materials (PCM)[J]. Applied Thermal Engineering, 2013, 58(1/2):615-625.
[1] Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927.
[2] Jian ZHAO, Xingchao ZHOU, Dan XIA, Hang DONG. Study on influence of mechanical stirring on heat transfer characteristics during jet heating of crude oil storage tank [J]. CIESC Journal, 2023, 74(5): 1982-1999.
[3] Kunyang FAN, Jingxing YANG, Haibo XU, Xingrong LIAN, Fengmei HE, Conghui CHEN, Zengyao LI. A unified lattice Boltzmann model for heat transfer in opacifiers-doped silica aerogel [J]. CIESC Journal, 2023, 74(5): 1974-1981.
[4] Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548.
[5] Xuehong WU, Linlin LUAN, Yanan CHEN, Min ZHAO, Cai LYU, Yong LIU. Preparation and thermal properties of degradable flexible phase change films [J]. CIESC Journal, 2023, 74(4): 1818-1826.
[6] Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734.
[7] Huizhu YANG, Jingling LAN, Yue YANG, Jialin LIANG, Chuanwen LYU, Yonggang ZHU. Experimental study on thermal performance of high power flat heat pipe [J]. CIESC Journal, 2023, 74(4): 1561-1569.
[8] Jiyuan LI, Jinwang LI, Liuwei ZHOU. Heat transfer performance of cold plates with different turbulence structures [J]. CIESC Journal, 2023, 74(4): 1474-1488.
[9] Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754.
[10] Chi YIN, Zhengguo ZHANG, Ziye LING, Xiaoming FANG. Combining paraffin@silica nanocapsules with carbon fiber to develop a phase change thermal interface material for efficient heat dissipation [J]. CIESC Journal, 2023, 74(4): 1795-1804.
[11] Shaohang YAN, Tianwei LAI, Yanwu WANG, Yu HOU, Shuangtao CHEN. Visual experimental study on cavitation of R134a in micro clearance [J]. CIESC Journal, 2023, 74(3): 1054-1061.
[12] Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072.
[13] Zhiguang QIAN, Yue FAN, Shixue WANG, Like YUE, Jinshan WANG, Yu ZHU. Effect of purging conditions on the impedance relaxation phenomenon and low temperature start-up of PEMFC [J]. CIESC Journal, 2023, 74(3): 1286-1293.
[14] Yang HE, Senhu GAO, Qingyun WU, Mingli ZHANG, Tao LONG, Pei NIU, Jinghui GAO, Yingqi MENG. Numerical study on heat and mass transfer characteristics of straight slotted fins under wet conditions [J]. CIESC Journal, 2023, 74(3): 1073-1081.
[15] Jianglong DU, Wenqi YANG, Kai HUANG, Cheng LIAN, Honglai LIU. Heat dissipation performance of the module combined CPCM with air cooling for lithium-ion batteries [J]. CIESC Journal, 2023, 74(2): 674-689.
Full text



No Suggested Reading articles found!