[1] |
陈前. 关于工程大系统的状态监测与故障诊断[J]. 振动、测试与诊断, 2002, 22(3):163-230. CHEN Q. Condition monitoring and fault diagnosis of large-scale engineering system[J]. Journal of Vibration Measurement and Diagnosis, 2002, 22(3):163-230.
|
[2] |
GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562.
|
[3] |
CHEN Q, WYNNE R J, GOULDING P, et al. The application of principal component analysis and kernel density estimation to enhance process monitoring[J]. Control Engineering Practice, 2000, 8(5):531-543.
|
[4] |
童楚东, 史旭华. 基于互信息的PCA方法及其在过程监测中的应用[J]. 化工学报, 2015, 66(10):4101-4106. TONG C D, SHI X H. Mutual information based PCA algorithm with application in process monitoring[J]. CIESC Journal, 2015, 66(10):4101-4106.
|
[5] |
KANO M, TANAKA S, HASEBE S, et al. Monitoring independent components for fault detection[J]. AIChE Journal, 2003, 49(4):969-976.
|
[6] |
GE Z, SONG Z. Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 123:1-8.
|
[7] |
HUANG J, YAN X. Gaussian and non-Gaussian double subspace statistical process monitoring based on principal component analysis and independent component analysis[J]. Industrial & Engineering Chemistry Research, 2015, 54(3):1015-1027.
|
[8] |
衷路生, 何东, 龚锦红, 等. 基于分布式ICA-PCA模型的工业过程故障监测[J]. 化工学报, 2015, 66(11):4546-4554. ZHONG L S, HE D, GONG J H, et al. Fault monitoring of industrial process based on distributed ICA-PCA model[J]. CIESC Journal, 2015, 66(11):4546-4554.
|
[9] |
GUNTHER J C, CONNER J S, SEBORG D E. Process monitoring and quality variable prediction utilizing PLS in industrial fed-batch cell culture[J]. Journal of Process Control, 2009, 19(5):914-921.
|
[10] |
韩敏, 张占奎. 基于改进核主成分分析的故障检测与诊断方法[J]. 化工学报, 2015, 66(6):2139-2149. HAN M, ZHANG Z K. Fault detection and diagnosis method based on modified kernel principal component analysis[J]. CIESC Journal, 2015, 66(6):2139-2149.
|
[11] |
LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1):223-234.
|
[12] |
LEE J M, QIN S J, LEE I B. Fault detection of non-linear processes using kernel independent component analysis[J]. The Canadian Journal of Chemical Engineering, 2007, 85(4):526-536.
|
[13] |
ZHANG Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM[J]. Chemical Engineering Science, 2009, 64(5):801-811.
|
[14] |
胡益, 王丽, 马贺贺, 等. 基于核PLS方法的非线性过程在线监控[J]. 化工学报, 2011, 62(9):2555-2561. HU Y, WANG L, MA H H, et al. Online nonlinear process monitoring using kernel partial least squares[J]. CIESC Journal, 2011, 62(9):2555-2561.
|
[15] |
GODOY J L, ZUMOFFEN D A, VEGA J R, et al. New contributions to non-linear process monitoring through kernel partial least squares[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 135:76-89.
|
[16] |
COMON P, JUTTEN C. Handbook of Blind Source Separation:Independent Component Analysis and Applications[M]. Academic Press, 2010.
|
[17] |
BERTHOUEX P M, BOX G E. Time series models for forecasting wastewater treatment plant performance[J]. Water Research, 1996, 30(8):1865-1875.
|
[18] |
ENGLE R F, GRANGER C W J. Co-integration and error correction:representation, estimation, and testing[J]. Econometrica, 1987, 55(2):251-276.
|
[19] |
PFAFF B. Analysis of Integrated and Cointegrated Time Series with R[M]. Springer Science & Business Media, 2008.
|
[20] |
ENDERS W. Applied Econometric Time Series[M]. John Wiley & Sons, 2008.
|
[21] |
陈前, 潘昱昱. 协整理论应用于非平稳FCCU系统的状态监测与故障诊断[J]. 石油学报(石油加工), 2007, 23(1):69-76. CHEN Q, PAN Y Y. Application of cointegration testing method to condition monitoring and fault diagnosis of nonstationary FCCU system[J]. Acta Petrolet Sinica (Petroleum Processing Section), 2007, 23(1):69-76.
|
[22] |
CHEN Q, KRUGER U, LEUNG A Y T. Cointegration testing method for monitoring nonstationary processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(7):3533-3543.
|
[23] |
石海忱, 陈前, 林原灵. 协整系数矩阵的非平稳工程系统故障诊断应用研究[J]. 振动与冲击, 2015, 34(1):146-150. SHI H C, CHEN Q, LIN Y L. Fault diagnosis of non-stationary engineering system using cointegration cofficients matrix[J]. Journal of Vibration and Shock, 2015, 34(1):146-150.
|
[24] |
STOCK J H, WATSON M W. Testing for common trends[J]. Journal of the American statistical Association, 1988, 83(404):1097-1107.
|
[25] |
DICKEY D A, FULLER W A. Distribution of the estimators for autoregressive time series with a unit root[J]. Journal of the American statistical association, 1979, 74(366a):427-431.
|
[26] |
AKAIKE H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6):716-723.
|
[27] |
JOHANSEN S, JUSELIUS K. Maximum likelihood estimation and inference on cointegration-with applications to the demand for money[J]. Oxford Bulletin of Economics and statistics, 1990, 52(2):169-210.
|
[28] |
JOHANSEN S. Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models[J]. Econometrica, 1991, 59(59):1551-1580.
|
[29] |
KASA K. Common stochastic trends in international stock markets[J]. Journal of monetary Economics, 1992, 29(1):95-124.
|
[30] |
GONZALO J, GRANGER C. Estimation of common long-memory components in cointegrated systems[J]. Journal of Business and Economic Statistics, 1995, 13(1):27-35.
|
[31] |
ESCRIBANO A, PEÑA D. Cointegration and common factors[J]. Journal of Time Series Analysis, 1994, 15(6):577-586.
|
[32] |
HOTELLING H. The Generalization of Student's Ratio[M]. New York:Springer, 1992.
|