[1] |
GISLASON S R, OELKERS E H. Carbon storage in basalt[J]. Science, 2014, 344(6182):373-374.
|
[2] |
DATTA S J, KHUMNOON C, LEE Z H, et al. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate[J]. Science, 2015, 350(6258):302-306.
|
[3] |
SENEVIRATNE S I, DONAT M G, PITMAN A J, et al. Allowable CO2 emissions based on regional and impact-related climate targets[J]. Nature, 2016, 529(7587):477-483.
|
[4] |
LEE J H, LEE H J, LIM S Y, et al. Combined CO2-philicity and ordered meso-porosity for highly selective CO2 capture at high temperatures[J]. J. Am. Chem. Soc., 2015, 137(22):7210-7216.
|
[5] |
LIMA F V, DAOUTIDIS P, TSAPATSIS M. Modeling, optimization and cost analysis of an IGCC plant with a membrane reactor for carbon capture[J]. AIChE J., 2016, 62(5):1568-1580.
|
[6] |
YU J W, WANG S J. Development of a novel process for aqueous ammonia based CO2 capture[J]. Int. J. Greenh. Gas Control, 2015, 39:129-138.
|
[7] |
STEWART C, HESSAMI M A. A study of methods of carbon dioxide capture and sequestration--the sustainability of a photosynthetic bioreactor approach[J]. Energy Conv. Manag., 2005, 46(3):403-420.
|
[8] |
KHATRI R A,CHUANG S S C, SOONG Y, et al. Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture[J]. Energy Fuels, 2006, 20(4):1514-1520.
|
[9] |
JACKSON R B, CANADELL J G, QUÉRÉ C L, et al. Reaching peak emissions[J]. Nat. Clim. Chang., 2016, 6(1):7-10.
|
[10] |
ZHAO Z J, DONG H F, HUANG Y, et al. Ionic degradation inhibitors and kinetic models for CO2 capture with aqueous monoethanolamine[J]. Int. J. Greenh. Gas Control, 2015, 39:119-128.
|
[11] |
PADUREAN A, CORMOS C C, AGACHI P S. Pre-combustion carbon dioxide capture by gas-liquid absorption for integrated gasification combined cycle power plants[J]. Int. J. Greenh. Gas Control, 2012, 7:1-11.
|
[12] |
GIUFFRIDA A, ROMANO M C, LOZZA G. Thermodynamic analysis of air-blown gasification for IGCC applications[J]. Appl. Energy, 2011, 88(11):3949-3958.
|
[13] |
ZHANG X P, ZHANG X C, DONG H F, et al. Carbon capture with ionic liquids:overview and progress[J]. Energy Environ. Sci., 2012, 5(5):6668-6681.
|
[14] |
LEPAUMIER H, PICQ D, CARRETTE P L. New amines for CO2 capture(Ⅱ):Oxidative degradation mechanisms[J]. Ind. Eng. Chem. Res., 2009, 48(20):9068-9075.
|
[15] |
FARAMARZI L, KONTOGEORGIS G M, MICHELSEN M L, et al. Absorber model for CO2 capture by monoethanolamine[J]. Ind. Eng. Chem. Res., 2010, 49(8):3751-3759.
|
[16] |
RAYER A V, HENNI A, TONTIWACHWUTHIKUL P. High pressure physical solubility of carbon dioxide (CO2) in mixed polyethylene glycol dimethyl ethers (Genosorb 1753)[J]. Can. J. Chem. Eng., 2012, 90(3):576-583.
|
[17] |
HOCHGESA G. Rectisol and puriso[J]. Industrial and Engineering Chemistry, 1970, 62(7):37-43.
|
[18] |
桂霞, 王陈魏, 云志, 等. 燃烧前CO2捕集技术研究进展[J]. 化工进展, 2014, 33(7):1895-1901. GUI X, WANG C W, YUN Z, et al. Research progress of pre-combustion CO2 capture[J]. Chemical Industry and Engineering Progress, 2014, 33(7):1895-1901.
|
[19] |
崔敬杰. 中高压二氧化碳连续吸收解吸工艺研究[D]. 北京:清华大学, 2014. CUI J J. Research on the continuous CO2 absorption and desorption process under high pressure[D]. Beijing:Tsinghua University, 2014.
|
[20] |
SUN H, ZHOU X Q, XUE Z M, et al. Theoretical investigations on the reaction mechanisms of amine-functionalized ionic liquid[aEMMIM][BF4] and CO2[J]. Int. J. Greenh. Gas Control, 2014, 20:43-48.
|
[21] |
BRENNECKE J E, GURKAN B E. Ionic liquids for CO2 capture and emission reduction[J]. J. Phys. Chem. Lett., 2010, 1(24):3459-3464.
|
[22] |
DAI C N, WEI W J, LEI Z G, et al. Absorption of CO2 with methanol and ionic liquid mixture at low temperatures[J]. Fluid Phase Equilib., 2015, 391:9-17.
|
[23] |
ZHAO Y S, ZHANG X P, ZENG S J, et al. Density, viscosity, and performances of carbon dioxide capture in 16 absorbents of amine plus ionic liquid+H2O, ionic liquid+H2O, and amine+H2O systems[J]. J. Chem. Eng. Data, 2010, 55(9):3513-3519.
|
[24] |
HARPER N D, NIZIO K D, HENDSBEE A D, et al. Survey of carbon dioxide capture in phosphonium-based ionic liquids and end-capped polyethylene glycol using DETA (DETA=diethylenetriamine) as a model absorbent[J]. Ind. Eng. Chem. Res., 2011, 50(5):2822-2830.
|
[25] |
GUI X, TANG Z G, FEI W Y. CO2 capture with physical solvent dimethyl carbonate at high pressures[J]. J. Chem. Eng. Data, 2010, 55(9):3736-3741.
|
[26] |
SAFAROV J, HAMIDOVA R, STEPHAN M, et al. Carbon dioxide solubility in 1-butyl-3-methylimidazolium-bis(trifluormethylsulfonyl) imide over a wide range of temperatures and pressures[J]. J. Chem. Thermodyn., 2013, 67:181-189.
|
[27] |
ZHANG, X C, LIU Z P, WANG W C. Screening of ionic liquids to capture CO2 by COSMO-RS and experiments[J]. AIChE J., 2008, 54(10):2717-2728.
|
[28] |
LEI Z G, QI X X, ZHU J Q, et al. Solubility of CO2 in acetone, 1-butyl-3-methylimidazolium tetrafluoroborate, and their mixtures[J]. J. Chem. Eng. Data, 2012, 57(12):3458-3466.
|
[29] |
乞晓曦. 常温下丙酮改性溶剂吸收CO2/H2的研究[D]. 北京:北京化工大学, 2013. QI X X. Research on the modification of acetone as solvent for absorbing carbon dioxide or hydrogen[D]. Beijing:Beijing University of Chemical Technology, 2013.
|