[1] |
FUTABA D N, HATA K, YAMADA T, et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nature Materials, 2006, 5(12):987-994.
|
[2] |
LV P, FENG Y Y, LI Y, et al. Carbon fabric-aligned carbon nanotube/MnO2/conducting polymers ternary composite electrodes with high utilization and mass loading of MnO2 for super-capacitors[J]. Journal of Power Sources, 2012, 220:160-168.
|
[3] |
NOKED M, OKASHY S, ZIMRIN T, et al. Composite carbon nanotube/carbon electrodes for electrical double-layer super capacitors[J]. Angewandte Chemie-International Edition, 2012, 51(7):1568-1571.
|
[4] |
JIANG J, SHI W, SONG S, et al. Solvothermal synthesis and electrochemical performance in super-capacitors of Co3O4/C flower-like nanostructures[J]. Journal of Power Sources, 2014, 248:1281-1289.
|
[5] |
KUMAR R, KIM H J, PARK S, et al. Graphene-wrapped and cobalt oxide-intercalated hybrid for extremely durable super-capacitor with ultrahigh energy and power densities[J]. Carbon, 2014, 79:192-202.
|
[6] |
NISHIMOTO Y, YOKOGAWA D, YOSHIKAWA H, et al. Super-reduced polyoxometalates:excellent molecular cluster battery components and semipermeable molecular capacitors[J]. Journal of the American Chemical Society, 2014, 136(25):9042-9052.
|
[7] |
TANG W, PENG L, YUAN C, et al. Facile synthesis of 3D reduced graphene oxide and its polyaniline composite for super capacitor application[J]. Synthetic Metals, 2015, 202:140-146.
|
[8] |
ZOU J Y, ZHANG L, SONG J Y. Development of the 40 V hybrid super-capacitor unit[J]. IEEE Transactions on Magnetics, 2005, 41(1):294-298.
|
[9] |
BORENSTIEN A, NOKED M, OKASHY S, et al. Composite carbon nano-tubes (CNT)/activated carbon electrodes for non-aqueous super capacitors using organic electrolyte solutions[J]. Journal of the Electrochemical Society, 2013, 160(8):A1282-A1285.
|
[10] |
DE D, KLUMPNER C, PATEL C, et al. Modelling and control of a multi-stage interleaved DC-DC converter with coupled inductors for super-capacitor energy storage system[J]. IET Power Electronics, 2013, 6(7):1360-1375.
|
[11] |
WANG J D, PENG T J, SUN H J, et al. Effect of the hydrothermal reaction temperature on three-dimensional reduced graphene oxide's appearance, structure and super capacitor performance[J]. Acta Physico-Chimica Sinica, 2014, 30(11):2077-2084.
|
[12] |
CAO X H, SHI Y M, SHI W H, et al. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries[J]. Small, 2013, 9(20):3433-3438.
|
[13] |
WANG H W, ZHANG Y, ANG H X, et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode[J]. Advanced Functional Materials, 2016, 26(18):3082-3093.
|
[14] |
JIANG H, ZHANG H X, FU Y, et al. Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids:the role of silver in boosting Li ion storage[J]. ACS Nano, 2016, 10(1):1648-1654.
|
[15] |
JENSEN K P, JORGENSEN W L. Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions[J]. Journal of Chemical Theory and Computation, 2006, 2(6):1499-1509.
|
[16] |
GANCHEFF J S, KREMER C, VENTURA O N. Interaction of simple ions with water:theoretical models for the study of ion hydration[J]. Journal of Chemical Education, 2009, 86(12):1403-1407.
|
[17] |
RIZZO R C, JORGENSEN W L. OPLS all-atom model for amines:resolution of the amine hydration problem[J]. Journal of the American Chemical Society, 1999, 121(20):4827-4836.
|
[18] |
KAMINSKI G A, FRIESNER R A, TIRADO-RIVES J, et al. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides[J]. Journal of Physical Chemistry B, 2001, 105(28):6474-6487.
|
[19] |
ZHOU L, ZHAO D Y, LOU X W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries[J]. Advanced Materials, 2012, 24(6):745-748.
|
[20] |
MADRIA N, ARUNKUMAR T A, NAIR N G, et al. Ionic liquid electrolytes for lithium batteries:synthesis, electrochemical, and cytotoxicity studies[J]. Journal of Power Sources, 2013, 234:277-284.
|
[21] |
DEWAR M J S, ZOEBISCH E G, HEALY E F, et al. AM1:a new general purpose quantum mechanical molecular model[J]. Journal of the American Chemical Society, 1985, 107(13):3902-3909.
|
[22] |
MURPHY R B, PHILIPP D M, FRIESNER R A. A mixed quantum mechanics/molecular mechanics (QM/MM) method for large-scale modeling of chemistry in protein environments[J]. Journal of Computational Chemistry, 2000, 21(16):1442-1457.
|
[23] |
TAYLOR J, GUO H, WANG J. Ab initio modeling of quantum transport properties of molecular electronic devices[J]. Physical Review B, 2001, 63(24):245407.
|
[24] |
CHIBA M, FEDOROV D G, KITAURA K. Polarizable continuum model with the fragment molecular orbital-based time-dependent density functional theory[J]. Journal of Computational Chemistry, 2008, 29(16):2667-2676.
|
[25] |
COHEN A J, MORI-SANCHEZ P, YANG W. Challenges for density functional theory[J]. Chemical Reviews, 2012, 112(1):289-320.
|
[26] |
JOUNG I S, CHEATHAM T E Ⅲ. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations[J]. Journal of Physical Chemistry B, 2008, 112(30):9020-9041.
|
[27] |
PEZESHKI S, LIN H. Molecular dynamics simulations of ion solvation by flexible-boundary QM/MM:on-the-fly partial charge transfer between QM and MM subsystems[J]. Journal of Computational Chemistry, 2014, 35(24):1778-1788.
|
[28] |
HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review B, 1964, 136(3B):B864-B871.
|
[29] |
KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A):A1133-A1138.
|
[30] |
HO G S, LIGNERES V L, CARTER E A. Introducing profess:a new program for orbital-free density functional theory calculations[J]. Computer Physics Communications, 2008, 179(11):839-854.
|
[31] |
FREEMAN F, HEHRE W J. An ab initio molecular orbital theory and density functional theory study of the conformational free energies of methyltetrahydro-2H-thiopyrans[J]. Journal of Molecular Structure-Theochem, 2000, 529:225-239.
|
[32] |
CARLING K M, CARTER E A. Orbital-free density functional theory calculations of the properties of Al, Mg and Al-Mg crystalline phases[J]. Modelling and Simulation in Materials Science and Engineering, 2003, 11(3):339-348.
|
[33] |
LANGRETH D C, PERDEW J P. Exchange-correlation energy of a metallic surface:wave-vector analysis. ii[J]. Physical Review B, 1982, 26(6):2810-2818.
|
[34] |
VOSKO S H, WILK L, NUSAIR M. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations-a critical analysis[J]. Canadian Journal of Physics, 1980, 58(8):1200-1211.
|
[35] |
PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation-energy[J]. Physical Review B, 1992, 45(23):13244-13249.
|
[36] |
ALONSO J A, GIRIFALCO L A. Nonlocal approximation to exchange potential and kinetic-energy of an inhomogeneous electron-gas[J]. Physical Review B, 1978, 17(10):3735-3743.
|
[37] |
KERKER G P. Nonlocal-density approximation to exchange and correlation:effect on the silicon band structure[J]. Physical Review B (Condensed Matter), 1981, 24(6):3468-3473.
|
[38] |
CUEVAS-SAAVEDRA R, CHAKRABORTY D, RABI S, et al. Symmetric nonlocal weighted density approximations from the exchange-correlation hole of the uniform electron gas[J]. Journal of Chemical Theory and Computation, 2012, 8(11):4081-4093.
|
[39] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868.
|
[40] |
BECKE A D. Density-functional thermochemistry(Ⅲ):The role of exact exchange[J]. The Journal of Chemical Physics, 1993, 98(7):5648-5652.
|
[41] |
CHENGTEH L, WEITAO Y, PARR R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B (Condensed Matter), 1988, 37(2):785-789.
|