CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 3950-3962.DOI: 10.11949/0438-1157.20200456

• Reviews and monographs • Previous Articles     Next Articles

Advances in engineering electroactive biofilms by synthetic biology approaches

Jing XU1,2,3(),Zixuan YOU1,2,3,4,Junqi ZHANG1,2,3,Zheng CHEN1,2,3,Deguang WU5,Feng LI1,2,3,4(),Hao SONG1,2,3,4()   

  1. 1.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2.Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
    3.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    4.Qingdao Institute Ocean Engineering, Tianjin University, Qingdao 266000, Shandong, China
    5.Moutai Institute, Renhuai 564501, Guizhou, China
  • Received:2020-04-29 Revised:2020-05-25 Online:2020-09-05 Published:2020-09-05
  • Contact: Feng LI,Hao SONG

合成生物学方法改造电活性生物膜研究进展

徐静1,2,3(),由紫暄1,2,3,4,张君奇1,2,3,陈正1,2,3,吴德光5,李锋1,2,3,4(),宋浩1,2,3,4()   

  1. 1.天津大学化工学院,天津 300072
    2.天津大学合成生物学前沿科学中心和系统生物工程教育部重点实验室,天津 300072
    3.天津大学化工协同创新中心合成生物学研究平台,天津 300072
    4.天津大学青岛海洋工程研究院,山东 青岛 266000
    5.茅台学院,贵州 仁怀 564501
  • 通讯作者: 李锋,宋浩
  • 作者简介:徐静(1994—),男,硕士研究生,neymarxujing@163.com
  • 基金资助:
    科技部重点研发计划(2018YFA0901300);天津大学自主创新基金(0903065070);贵州省教育厅青年科技人才成长项目(黔教合KY字[2018]445)

Abstract:

Electroactive biofilm is a conductive polymer formed by the aggregation of extracellular polysaccharides, proteins, extracellular DNA (etracellular DNA, eDNA), fimbria and other components secreted by electrical energy cells and cross-linking with the cells themselves. Biofilms, which are different from single cells in the form of population aggregation, and play a crucial role in electrocatalytic systems including microbial fuel cells, microbial bioelectrosynthesis for the production of value-added chemicals, metal wastes treatment, and biomedicine. In the natural state, the thickness of electroactive biofilm is relatively thin, the cell quantity is small and the structure is not stable. In this review, we summarize the progress of the research on the modification of electroactive biofilm by synthetic biology in the past five years. We systematically describe the construction control of biofilm, the synthesis of structural components and the transformation of electrical conductivity, so as to realize the electroactive biofilm with high efficiency of electron transfer, and lay a foundation for the further realization of high efficiency of electrocatalysis in the future.

Key words: electroactive bacteria, biofilm, synthetic biology, biocatalysis, extracellular electron transfer, microbial electrocatalysis

摘要:

电活性生物膜是由电能细胞分泌的胞外多糖、蛋白、胞外DNA(extracellular DNA, eDNA)、菌毛等成分聚集,与细胞本身相互交联形成的导电多聚体。以多菌群落形态展现,在微生物燃料电池、微生物电合成、高值化学品生产、重金属污染处理、医疗等领域中具有至关重要的作用,是微生物电催化系统研究的核心之一。但自然状态下的电活性生物膜因厚度、结构稳定性、生物量等因素的限制,严重制约了电子传递效率。综述了近五年利用合成生物学改造电活性生物膜的研究进展,系统探讨了工程生物膜的构建、结构成分、导电性能以及应用,为将来进一步实现高效电催化奠定基础。

关键词: 电活性微生物, 生物膜, 合成生物学, 生物催化, 胞外电子传递, 微生物电催化

CLC Number: