CIESC Journal ›› 2016, Vol. 67 ›› Issue (11): 4724-4731.DOI: 10.11949/j.issn.0438-1157.20161183

Previous Articles     Next Articles

Online economic performance grading assessment method based on similarity grid model

LIU Xueyan1, WANG Zhenlei1, WANG Xin2   

  1. 1 Key Laboratory of Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology, Shanghai 200237, China;
    2 Center of Electrical & Electronic Technology, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2016-08-24 Revised:2016-09-01 Online:2016-11-05 Published:2016-11-05
  • Supported by:

    supported by the Key Program of the National Natural Science Foundation of China(61134007), the Natural Science Foundation of Shanghai(13ZR1411300, 14ZR1421800), the Shanghai "Technology Innovation Action Plan" Development Platform for Building Projects (13DZ2295300) and the State Key Laboratory of Synthetical Automation for Process Industries(PAL-N201404).

基于相似度网格模型的在线经济性能分级评估方法

刘学彦1, 王振雷1, 王昕2   

  1. 1 华东理工大学化工过程先进控制和优化技术教育部重点实验室, 上海 200237;
    2 上海交通大学电工与电子技术中心, 上海 200240
  • 通讯作者: 王振雷,wangzhen_l@ecust.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(61134007);上海市自然科学基金项目(13ZR1411300,14ZR1421800);上海市“科技创新行动计划”研发平台建设项目(13DZ2295300);流程工业综合自动化国家重点实验室开放课题基金项目(PAL-N201404)。

Abstract:

In view of the problem that objective function is difficult to calculate online, a process-data-based online economic performance grading assessment method is proposed. Autoregressive projection to latent structure algorithm (AR-PLS) is used to decompose input data matrix. Then, offline models of different performance grades are established in the subspace related to output latent variable, and thus the unrelated-output variation is eliminated. Afterwards, a similarity-grid model is designed using strategy of “calibration zoning, then comparing the similarity of adjacent grades”. The method can divide process performance into steady performance grade state and transition state. Performance variations caused by factors excluded in offline model can be identified to enrich the offline database further. When the evaluation result is nonoptimal, the cause of performance variation can be diagnosed by the variable contribution. Finally, ethylene cracking process data test shows the method can help to detect performance deviation in time and accurately.

Key words: economics, performance grade, model, steady state, transition, variable contributions

摘要:

针对经济性能评估方法中目标函数难以在线计算问题提出一种基于过程数据的在线经济性能分级评估方法。采用自回归潜结构映射(AR-PLS)算法对输入数据矩阵进行分解,在与输出潜变量相关的子空间上建立不同性能等级的离线模型,从而排除无关变化的干扰。然后采用“先标定分区,再对比邻级相似度”的策略设计一个相似度网格模型,将过程性能分为稳定性能级状态和过渡状态,并对离线模型中未出现过的因素造成的性能变化进行识别,以进一步丰富离线数据库。对于不属于最优性能级的过程数据,能够根据变量贡献度诊断造成性能变差的原因。乙烯裂解过程的现场数据测试实验表明本方法可以及时、准确地检测到经济性能的偏移。

关键词: 经济, 性能等级, 模型, 稳态, 过渡, 变量贡献度

CLC Number: