[1] |
葛志强, 宋执环. 一种新的多工况过程在线监测方法[J]. 化工学报, 2008, 59(1):135-141.GE Z Q, SONG Z H. New online monitoring method for multiple operating modes process[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(1):135-141.
|
[2] |
ZHAO C H. Phase analysis and statistical modeling with limited batches for multimode and multiphase process monitoring[J]. Journal of Process Control, 2014, 24(6):856-870.
|
[3] |
LEE J M, YOO C K, SANG W C, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1):223-234.
|
[4] |
ZHANG Y W, MA C. Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS[J]. Chemical Engineering Science, 2011, 66(1):64-72.
|
[5] |
TSUNG F. Statistical monitoring and diagnosis of automatic controlled processes using dynamic PCA[J]. International Journal of Production Research, 2010, 38(3):625-637.
|
[6] |
RATO T J, REIS M S. Defining the structure of DPCA models and its impact on process monitoring and prediction activities[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 125(1):74-86.
|
[7] |
GE Z Q, SONG Z H. Kernel generalization of PPCA for nonlinear probabilistic monitoring[J]. Industrial & Engineering Chemistry Research, 2010, 49(22):11832-11836.
|
[8] |
RAVEENDRAN R, HUANG B. Mixture probabilistic PCA for process monitoring-collapsed variational Bayesian approach[J]. IFAC-PapersOnLine, 2016, 49(7):1032-1037.
|
[9] |
SONG B, MA Y X, SHI H B. Improved performance of process monitoring based on selection of key principal components[J]. Chinese Journal of Chemical Engineering, 2015, 23(12):1951-1957.
|
[10] |
JIANG Q C, LI J, YAN X F. Performance-driven optimal design of distributed monitoring for large-scale nonlinear processes[J]. Chemometrics & Intelligent Laboratory Systems, 2016, 155:151-159.
|
[11] |
TAMURA M, TSUJITA S. A study on the number of principal components and sensitivity of fault detection using PCA[J]. Computers & Chemical Engineering, 2007, 31(9):1035-1046.
|
[12] |
JOLLIFFE I T. A note on the use of principal components in regression[J]. Applied Statistics, 1982, 31(3):300-303.
|
[13] |
JIANG Q C, YAN X F. Chemical processes monitoring based on weighted principal component analysis and its application[J]. Chemometrics & Intelligent Laboratory Systems, 2012, 119(4):11-20.
|
[14] |
JIANG Q C, YAN X F, ZHAO W X. Fault detection and diagnosis in chemical processes using sensitive principal component analysis[J]. Industrial & Engineering Chemistry Research, 2013, 52(4):1635-1644.
|
[15] |
HUANG Y, MCCULLAGH P J, BLACK N D. An optimization of ReliefF for classification in large datasets[J]. Data & Knowledge Engineering, 2009, 68(11):1348-1356.
|
[16] |
ZAFRA A, PECHENIZKIY M, VENTURA S. ReliefF-MI:an extension of ReliefF to multiple instance learning[J]. Neurocomputing, 2012, 75(1):210-218.
|
[17] |
ZHAO C H, LI W, SUN Y. Subspace decomposition approach of fault deviations and its application to fault reconstruction[J]. Control Engineering Practice, 2013, 21(10):1396-1409.
|
[18] |
ZHAO C H, GAO F R. Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring[J]. Chemometrics & Intelligent Laboratory Systems, 2014, 133(1):1-16.
|
[19] |
ZHAO C H, GAO F R. Subspace decomposition-based reconstruction modeling for fault diagnosis in multiphase batch processes[J]. Industrial & Engineering Chemistry Research, 2013, 52(41):14613-14626.
|
[20] |
GE Z Q, SONG Z H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors[J]. Industrial & Engineering Chemistry Research, 2007, 46(7):2054-2063.
|
[21] |
KIRA K, RENDELL L A. A practical approach to feature selection[C]//International Workshop on Machine Learning. San Francisco:Morgan Kaufmann Publishers Inc., 1992:249-256.
|
[22] |
KONONENKO I. Estimating attributes:analysis and extensions of RELIEF[M]//Machine Learning:ECML-94. Berlin Heidelberg:Springer, 1994:356-361.
|
[23] |
REYES O, MORELL C, VENTURA S. Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context[J]. Neurocomputing, 2015, 161(C):168-182.
|
[24] |
KIRA K, RENDELL L A. The feature selection problem:traditional methods and a new algorithm[C]//Tenth National Conference on Artificial Intelligence. USA:AAAI Press, 1992:129-134.
|
[25] |
DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers & Chemical Engineering, 1993, 17(3):245-255.
|
[26] |
MCAVOY T J, YE N. Base control for the Tennessee Eastman problem[J]. Computers & Chemical Engineering, 1994, 18(5):383-413.
|
[27] |
RATO T J, REIS M S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)[J]. Chemometrics & Intelligent Laboratory Systems, 2013, 125(7):101-108.
|
[28] |
RICKER N L. Optimal steady-state operation of the Tennessee Eastman challenge process[J]. Computers & Chemical Engineering, 1995, 19(9):949-959.
|
[29] |
LYMAN P R, GEORGAKIS C. Plant-wide control of the Tennessee Eastman problem[J]. Computers & Chemical Engineering, 1995, 19(3):321-331.
|
[30] |
YU J B. Local and global principal component analysis for process monitoring[J]. Journal of Process Control, 2012, 22(7):1358-1373.
|